
Mecademic Meca500 Siemens Basic
Functions Library

Quick Start Guide

Copyright © 2022 Think-PLC

All Rights Reserved.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE.

The provided library was developed with TIA Portal V16 for S7 1200 PLCs with firmware version > 4.2 and

S7 1500 PLCs with firmware version > 2.0

Table of Contents
Starting a project 4

General Station Description (GSD) 4

Meca500 S7 Library 5

Required blocks: Constants 5

Required blocks: UDTs 5

Required blocks: Meca500_Control 6

Required blocks: Meca500_Interface DB 7

Starting a project

General Station Description (GSD)
The installation of the Mecademic GSD file for the Meca500 robotic arm will be necessary before

communication with the Meca500 can be established. Start by downloading the GSD, and install from

the “Manage general station description files” in the Options menu of TIA Portal.

Once the GSD is installed, create a new project and

add a supported PLC to the project. Next add a

Meca500 object from the Hardware catalog.

Connect the robot’s communication port to the

appropriate PLC network for communication. From

the properties window, ensure the ip address is set

correctly for you robots.

Meca500 S7 Library
Open the S7 Meca500Lib. From the Libraries tab in the right hand control panel in TIA Portal, select the

“Global libraries” dropdown area and select “Open global library” button. Navigate to the

unpacked library directory, and select the provided Meca500Lib.al* file. [Current version is al16, though

this could change in the future]

Required blocks: Constants
The library contains several required elements to be copied to the project in order to function. Firstly,

copy the “Meca 500 Constants” object from Meca500Lib/Master copies/Constants to the PLC tags

section of the current project. This object provides constants that are used repeatedly withing the

library.

Required blocks: UDTs
Next, copy the provided UDTs from Meca500Lib/Types/UDTs to the project’s PLC data types section.

These UDTs provide common interfaces to the robot for each provided FC and FB.

Required blocks: Meca500_Control
The Basic Functions Library uses a master control block for each robot in the system. All cyclic

communication is handled by each robot’s respective control FB. Copy a new instance of the

Meca500_Control FB for each robot to be used in the project.

Set the HW_INTERFACE parameter to the appropriate system constant (m500~Robot_control_module_1)

for each robot in the system.

The “Interface” parameter will be used in the next section.

All other I/O is dependent on the end users available hardware. Inputs do as their description implies,

e.g. “Robot Enable” commands the robot to enable. If the enable command is successful, the “Activated”

output will go high. The same relationship for “Home Enable” / “Homed”, “Simulation” / “Simulation

Active”, and “Pause” / “Paused” exists1.

Required blocks: Meca500_Interface DB
Each robot should have its own Meca500_Interface DB instance. Each should be coupled to a single

Meca500_Control block. This interface DB is used with all other blocks to pass IO and state information

of the specific robot to all other blocks in the Library.

The interface is passed to each block using the interface DB name and Robot variable, e.g.

“Meca500_Interface”.Robot

This can be customized if more than one robot are used, using multiple interface DBs, such as

“Meca500_Interface_1”.Robot and “Meca500_Interface_2”.Robot

Programming
Once the previously stated requirements have been met, the robot can be controlled using the blocks

provided in the Basic Commands folder in the library. All functions work in the same manner as

documented in the standard programming manual from Mecademic, aside from the Meca500_Errors

block, which provides a single bit output for each error from the Meca 500 controller. Robot errors are

accessible through the DB variable “Meca500_Interface”.Robot.Robot_Inputs. RobotStatusError with 0

being no error, and values in the 1000 range being errors.

Two sample programs are provided in the Library in the Examples folder. Each demonstrate alternate

methods to implement the “Draw a square” routine from the Mecademic programming manual using

the S7 programming library.

1 With the exception that some errors can cause the robot to pause itself, causing the “Paused” output to

go high without the “Pause” input being high. In this case, it is necessary to clear the error (“Reset

Error”) and toggle the “Pause” input high, then low to clear the “Paused” state.

