
MECA500 (R3 & R4)

PROGRAMMING MANUAL

For Firmware Version 9.3.x

Document Revision: A

May 22, 2023

The information contained herein is the property of Mecademic and shall not be reproduced
in whole or in part without prior written approval of Mecademic. The information herein
is subject to change without notice and should not be construed as a commitment by
Mecademic. This manual will be periodically reviewed and revised.

While every effort has been made to ensure accuracy in this publication, no responsibility
can be accepted for errors or omissions. Data may change, as well as legislation, and you
are strongly advised to obtain copies of the most recently issued regulations, standards, and
guidelines.

This document is not intended to form the basis of a contract.

© Copyright 2015–2023 Mecademic

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) i

CONTENTS
1. BASIC THEORY AND DEFINITIONS ...1

1.1. Definitions and conventions ...1
1.1.1 Units ...1
1.1.2 Joint numbering ...1
1.1.3 Reference frames ...1
1.1.4 Pose and Euler angles ...2
1.1.5 Joint angles and joint 6 turn configuration ...3
1.1.6 Joint set and robot posture ..4

1.2. Configurations, singularities and workspace ..4
1.2.1 Inverse kinematic solutions and configuration parameters ...4
1.2.2 Automatic configuration selection ...7
1.2.3 Workspace and singularities ..8
1.2.4 Crossing singularities with linear Cartesian-space movements ..9

1.3. Key concepts for Mecademic robots ..11
1.3.1 Homing ...11
1.3.2 Recovery mode ...12
1.3.3 Blending ...12
1.3.4 Position and velocity modes ...13

2. TCP/IP COMMUNICATION...15
2.1. Motion commands ..15

2.1.1 Delay(t) ...16
2.1.2 GripperOpen/GripperClose ..16
2.1.3 MoveGripper(d) ...16
2.1.4 MoveJoints(θ1,θ2,θ3,θ4,θ5,θ6) ...17
2.1.5 MoveJointsRel(Δθ1,Δθ2,Δθ3,Δθ4,Δθ5,Δθ6) ..18
2.1.6 MoveJointsVel(θ̇1,θ̇2,θ̇3,θ̇4,θ̇5,θ̇6) ..18
2.1.7 MoveLin(x,y,z,α,β,γ) ...18
2.1.8 MoveLinRelTrf(x,y,z,α,β,γ) ...19
2.1.9 MoveLinRelWrf(x,y,z,α,β,γ) ...19
2.1.10 MoveLinVelTrf(ẋ,ẏ,ż,ωx,ωy,ωz) ...20
2.1.11 MoveLinVelWrf(ẋ,ẏ,ż,ωx,ωy,ωz) ..20
2.1.12 MovePose(x,y,z,α,β,γ) ..20
2.1.13 SetAutoConf(e) ...21
2.1.14 SetAutoConfTurn(e) ..21
2.1.15 SetBlending(p) ..21
2.1.16 SetCartAcc(p) ...22
2.1.17 SetCartAngVel(ω) ...22
2.1.18 SetCartLinVel(v)..22
2.1.19 SetCheckpoint(n) ..23
2.1.20 SetConf(cs,ce,cw)..23
2.1.21 SetConfTurn(ct) ...24

ii Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

2.1.22 SetGripperForce(p) ...24
2.1.23 SetGripperRange(dclosed,dopen) ...24
2.1.24 SetGripperVel(p) ...25
2.1.25 SetJointAcc(p) ..25
2.1.26 SetJointVel(p) ...25
2.1.27 SetJointVelLimit(po) ...26
2.1.28 SetTorqueLimits(p1,p2,p3,p4,p5,p6) ...26
2.1.29 SetTorqueLimitsCfg(s,m) ..27
2.1.30 SetTrf(x,y,z,α,β,γ) ..27
2.1.31 SetValveState(v1,v2) ...28
2.1.32 SetVelTimeout(t) ...28
2.1.33 SetWrf(x,y,z,α,β,γ) ...28

2.2. General request commands ...29
2.2.1 ActivateRobot(e) ...29
2.2.2 ActivateSim/DeactivateSim ..29
2.2.3 ClearMotion ..29
2.2.4 DeactivateRobot ...29
2.2.5 BrakesOn/BrakesOff ..30
2.2.6 EnableEtherNetIp(e) ...30
2.2.7 EnableProfinet(e) ...30
2.2.8 GetExtToolFwVersion ..30
2.2.9 GetFwVersion ...31
2.2.10 GetModelJointLimits(n)..31
2.2.11 GetProductType ..31
2.2.12 GetRobotName ...31
2.2.13 GetRobotSerial ...31
2.2.14 Home ..31
2.2.15 LogTrace(s) ...32
2.2.16 LogUserCommands(e1,e2) ..32
2.2.17 PauseMotion ...32
2.2.18 ResetError ..33
2.2.19 ResetPStop ...33
2.2.20 ResumeMotion ...33
2.2.21 SetCtrlPortMonitoring(e) ...33
2.2.22 SetEob(e) ..34
2.2.23 SetEom(e) ...34
2.2.24 SetExtToolSim(e) ..35
2.2.25 SetJointLimits(n,θn,min,θn,max) ...35
2.2.26 SetJointLimitsCfg(e) ...35
2.2.27 SetMonitoringInterval(t) ...36
2.2.28 SetNetworkOptions(n1,n2,n3,n4,n5,n6) ...36
2.2.29 SetOfflineProgramLoop(e) ...36
2.2.30 SetRealTimeMonitoring(n1,n2,...) ...37
2.2.31 SetRobotName(s) ...38
2.2.32 SetRecoveryMode(e) ...38

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) iii

2.2.33 SetRtc(t) ..39
2.2.34 SetToolSphere(x,y,z,r) ...39
2.2.35 SetWorkspaceLimitsCfg(s,m) ...39
2.2.36 SetWorkspaceLimits(xmin,ymin,zmin,xmax,ymax,zmax) ..40
2.2.37 StartProgram(s)..41
2.2.38 StartSaving(n) ...41
2.2.39 StopSaving ..41
2.2.40 SyncCmdQueue(n) ..42
2.2.41 SwitchToEtherCat ...42
2.2.42 TcpDump(n) ..42
2.2.43 TcpDumpStop ...43

2.3. Data request commands ..43
2.3.1 GetAutoConf ...43
2.3.2 GetAutoConfTurn ..43
2.3.3 GetBlending ..43
2.3.4 GetCartAcc ...44
2.3.5 GetCartAngVel ..44
2.3.6 GetCartLinVel ...44
2.3.7 GetCheckpoint ..44
2.3.8 GetConf ...44
2.3.9 GetConfTurn ...45
2.3.10 GetGripperForce ...45
2.3.11 GetGripperRange ...45
2.3.12 GetGripperVel ...45
2.3.13 GetJointAcc ..45
2.3.14 GetJointLimits(n) ..46
2.3.15 GetJointLimitsCfg ..46
2.3.16 GetJointVel ...46
2.3.17 GetJointVelLimit ...46
2.3.18 GetMonitoringInterval ..46
2.3.19 GetNetworkOptions ..47
2.3.20 GetRealTimeMonitoring ...47
2.3.21 GetToolSphere ..47
2.3.22 GetTorqueLimits ...47
2.3.23 GetTorqueLimitsCfg ...47
2.3.24 GetTrf ..47
2.3.25 GetVelTimeout ..48
2.3.26 GetWorkspaceLimits ..48
2.3.27 GetWorkspaceLimitsCfg ...48
2.3.28 GetWrf...48

2.4. Real-time data request commands ...49
2.4.1 GetCmdPendingCount..50
2.4.2 GetJoints ..50
2.4.3 GetPose ..50
2.4.4 GetRtAccelerometer(n) ..50

iv Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

2.4.5 GetRtc ...51
2.4.6 GetRtCartPos ...51
2.4.7 GetRtCartVel ...51
2.4.8 GetRtConf ...51
2.4.9 GetRtConfTurn ..52
2.4.10 GetRtExtToolStatus ..52
2.4.11 GetRtGripperForce ...52
2.4.12 GetRtGripperPos ..53
2.4.13 GetRtGripperState ..53
2.4.14 GetRtGripperVel ...53
2.4.15 GetRtJointPos...53
2.4.16 GetRtJointTorq ...54
2.4.17 GetRtJointVel ..54
2.4.18 GetRtTargetCartPos ...54
2.4.19 GetRtTargetCartVel ..54
2.4.20 GetRtTargetConf ...55
2.4.21 GetRtTargetConfTurn ...55
2.4.22 GetRtTargetJointPos ..55
2.4.23 GetRtTargetJointTorq ...55
2.4.24 GetRtTargetJointVel ...55
2.4.25 GetRtTrf ..56
2.4.26 GetRtValveState ..56
2.4.27 GetRtWrf ...56
2.4.28 GetStatusGripper ...56
2.4.29 GetStatusRobot ..57
2.4.30 GetTorqueLimitsStatus ..57

2.5. Responses and messages ..57
2.5.1 Command error messages ..58
2.5.2 Command responses ...59
2.5.3 Status messages ..63
2.5.4 Monitoring port messages ...64

2.6. Management of errors and hardware stops ..66
2.6.1 Errors detected by the robot ..66
2.6.2 SWStop ...66
2.6.3 E-Stop and P-Stop 1 ...67

3. COMMUNICATING OVER CYCLIC PROTOCOLS..68
3.1. Cyclic data ...68
3.2. Types of robot commands ..68

3.2.1 Status change commands ..68
3.2.2 Triggered actions..68
3.2.3 Motion commands ..69

3.3. Sending motion commands ..69
3.3.1 Command ID ...69
3.3.2 MoveID and SetPoint ..69
3.3.3 Adding non-cyclic motion commands to the motion queue (position mode) ...70

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) v

3.3.4 Sending cyclic motion commands (velocity mode) ..70
3.4. Cyclic data that can be sent to the robot ..71

3.4.1 Robot control ..71
3.4.2 Motion control ..71
3.4.3 Motion parameters ...72
3.4.4 Host time ..73
3.4.5 Brake control ..74
3.4.6 Dynamic data configuration ...74

3.5. Cyclic data received from the robot ..76
4. ETHERCAT COMMUNICATION ..79

4.1. Overview ..79
4.1.1 Connection types ..79
4.1.2 ESI file ..79
4.1.3 Enabling EtherCAT ...79
4.1.4 LEDs ...79

4.2. Object dictionary ...80
4.2.1 Robot control ..80
4.2.2 Motion control ..81
4.2.3 Movement ...81
4.2.4 Host time ..82
4.2.5 Brake control ..82
4.2.6 Dynamic data configuration ...82
4.2.7 Robot status ...83
4.2.8 Motion status ..84
4.2.9 Target joint set ..84
4.2.10 Target end-effector pose ..85
4.2.11 Target configuration ...85
4.2.12 WRF ..86
4.2.13 TRF ...86
4.2.14 Robot timestamp ..87
4.2.15 Dynamic data ..87
4.2.16 Communication mode (SDO) ..89

4.3. PDO Mapping ..89
5. ETHERNET/IP COMMUNICATION ...91

5.1. Connection types ..91
5.2. EDS file ...91
5.3. Forward open exclusivity ..91
5.4. Enabling Ethernet/IP ..91
5.5. Output tag assembly ...91

5.5.1 Robot control tag ..92
5.5.2 MoveID tag ..92
5.5.3 Motion control tag ..93
5.5.4 Motion command group of tags ...93
5.5.5 Host time tag ..93

vi Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

5.5.6 Brake control tag ..94
5.5.7 Dynamic data configuration tag ...94

5.6. Input tag assembly ...94
5.6.1 Robot status tag ...97
5.6.2 Error code tag ..97
5.6.3 Checkpoint tag ...97
5.6.4 MoveID tag ..97
5.6.5 FIFO space tag ..97
5.6.6 Motion status tag ..98
5.6.7 Offline program ID ..98
5.6.8 Target joint set ..98
5.6.9 Target end-effector pose ..99
5.6.10 Target configuration ...99
5.6.11 WRF ..99
5.6.12 TRF ... 100
5.6.13 Robot timestamp .. 100
5.6.14 Dynamic data .. 101

6. PROFINET COMMUNICATION ...102
6.1. PROFINET conformance class ...102

6.1.1 PROFINET limitations on the Meca500 robot .. 102
6.2. Connection types ..102

6.2.1 Limitations when daisy-chaining robots.. 102
6.2.2 PROFINET protocol over your Ethernet network ... 102

6.3. Enabling PROFINET ...103
6.4. Exclusivity of AR ..103
6.5. GSDML file ..104

6.5.1 Meca500 modules and sub-modules ... 104
6.6. Cyclic data ...104
6.7. Alarms ..104

7. GLOSSARY ..105

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) vii

ABOUT THIS MANUAL

This manual describes the key concepts for industrial robots and the communication methods used with
our robots through an Ethernet-enabled computing device (IPC, PLC, PC, Mac, Raspberry Pi, etc.): using
either TCP/IP, EtherCAT, EtherNet/IP, or PROFINET protocols. To maximize flexibility, we do not use a
proprietary programming language. Instead, we provide a set of robot-related instructions, making it
possible to use any modern programming language that can run on your computing device.

The default communication protocol for the Mecademic robot is TCP/IP; it consists of a set of text-based
motion and request commands sent to and returned by the robot. Additional cyclic communication
protocols (EtherCAT, EtherNet/IP, and PROFINET) are also available and described in this manual.
However, even if you do not intend to use the TCP/IP protocol, it is necessary to read the chapter that
describes its text-based commands.

Reading the Meca500 User Manual and understanding the robot's operating principles is a prerequisite
to reading this Programming Manual.

Symbol definitions
The following table lists the symbols that may be used in Mecademic documents to denote certain
conditions. Particular attention must be paid to the warning messages in this manual.

SYMBOL DEFINITION

NOTICE. Identifies information that requires special consideration.

! CAUTION. Provides indications that must be respected in order to avoid equipment or work (data) on the
system being damaged or lost.

! WARNING. Provides indications that must be respected in order to avoid a potentially hazardous
situation, which could result in injury.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 1

BASIC THEORy ANd dEfINITIONS

1. BASIC THEORy ANd dEfINITIONS

We are dedicated to technical accuracy, detail, and consistency, and use terminology that is not always
standard. It is therefore important to read this section very carefully, even if you have prior experience
with robot arms.

1.1. definitions and conventions

1.1.1 Units
Distances that are displaced to or defined by the user are in millimeters (mm), angles are in degrees (°)
and time is in seconds (s), except for timestamps.

1.1.2 Joint numbering
The joints of the Meca500 are numbered in ascending order, starting from the base, as shown in
Figure 1a.

1
2

3

4

5

6

(a) robot with all joints numbered and at zero degrees (b) robot's flange with joint 6 at zero degrees

Figure 1: Robot's joint numbering and zero-degree joint positions

1.1.3 Reference frames
We use right-handed Cartesian coordinate systems (reference frames). These reference frames (according
to the original Denavit and Hartenberg convention) are shown in Figure 2 (x axes are red, y axes are
green, and z axes are blue), but you only need to be familiar with four of them. These four reference
frames and the key term related to them are:

2 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

 • BRF: Base reference frame. Static reference frame fixed to the robot base. Its z axis coincides with
the axis of joint 1 and points upwards, its origin lies on the bottom of the robot base, and its x axis
is normal to the base front edge and points forward.

 • WRF: World reference frame. The main static reference frame coincides with the BRF by default. It
can be defined to correspond to the BRF using the SetWrf command.

 • FRF: Flange reference frame. Mobile reference frame fixed to the robot's flange (the 20-mm disk with
threaded holes at the extremity of the robot, shown in Figure 1b). Its z axis coincides with the axis
of joint 6, and points outwards. Its origin lies on the surface of the robot's flange. Finally, when all
joints are at zero, the y axis of the FRF has the same direction as the y axis of the BRF.

 • TRF: Tool reference frame. The mobile reference frame associated with the robot's end-effector. By
default, the TRF coincides with the FRF. It can be defined with respect to the FRF with the SetTrf
command.

 • TCP: tool center point. Origin of the TRF. (Not to be confused with the Transmission Control Protocol
acronym, which is also used in this document.)

Figure 2: Joint numbering and reference frames for the Meca500

1.1.4 Pose and Euler angles
Some Meca500 commands accept pose (position and orientation of one reference frame with respect
to another) as an input. In these commands, and in the Meca500 web interface, a pose consists of a
Cartesian position, {x, y, z}, and an orientation specified in Euler angles, {α, β, γ}, according to the mobile
XYZ convention (also referred to as RxRyRz, or XY'Z''). In this convention, if the orientation of a frame F1
with respect to a frame F0 is described by the Euler angles {α, β, γ}, it means that if you align a frame Fm
with frame F0, then rotate Fm about its x axis by α degrees, then about its y axis by β degrees, and finally
about its z axis by γ degrees, the final orientation of frame Fm will be the same as that of frame F1.

Figure 3 shows an example of specifying orientation using the mobile XYZ Euler angle convention. The
diagram on the right shows the black reference frame orientation with respect to the gray reference
frame with the Euler angles {45°, −60°, 90°}.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 3

BASIC THEORy ANd dEfINITIONS

Because there are infinitely many sets of Euler angles that define a given orientation, the commands
that accept a pose as arguments, accept any numerical value for the three Euler angles (e.g., the set
{378.34°, −567.32°, 745.03°}). However, we output only the equivalent Euler angle set {α, β, γ}, for which
−180° ≤ α ≤ 180°, −90° ≤ β ≤ 90° and −180° ≤ γ ≤ 180°. Furthermore, if you specify the Euler angles {α,
±90°, γ}, the controller will always return an equivalent Euler angle set with α = 0. Thus, it is perfectly
normal that the Euler angles used to specify an orientation are not the same as the Euler angles
returned by the controller, once that orientation has been attained (see our tutorial on Euler angles).

(a) rotate 45° about the x axis (b) rotate −60° about the new y axis (c) rotate 90° about the new z axis

Figure 3: The three consecutive rotations associated with the Euler angles {45°, −60°, 90°}

The pose of the end-effector alone does not unequivocally define the required joint angles (see
Section 1.2.1).

1.1.5 Joint angles and joint 6 turn configuration
The angle associated with joint i (i = 1, 2, ..., 6), θi, will be referred to as joint angle i. Since joint 6 can
rotate more than one revolution, you should think of the joint angle as a motor angle, rather than as the
angle between two consecutive robot links.

A joint angle is measured about the z axis associated with the given joint using the right-hand rule
(Figure 1). Note that the direction of rotation for each joint is engraved on the robot's body. All joint
angles are zero in the robot shown in Figure 1. Note that unless you attach an end-effector with cabling
to the robot flange, there is no way of knowing the value of θ6 just by observing the robot.

The mechanical limits of the first five robot joints are as follows:

−175° ≤ θ1 ≤ 175°,

−70° ≤ θ2 ≤ 90°,

−135° ≤ θ3 ≤ 70°,

−170° ≤ θ4 ≤ 170°,

−115° ≤ θ5 ≤ 115°.

Joint 6 has no mechanical limits, but its software limits are ±100 turns. Finally, we define the integer ct as
the axis 6 turn configuration, so that −180° + ct360° < θ6 ≤ 180° + ct360°.

Joints can be further constrained using the SetJointLimits command (or via the robot web interface).

https://www.mecademic.com/resources/Euler-angles/Euler-angles

4 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

1.1.6 Joint set and robot posture
There are several possible solutions for joint angle values, for a desired location of the robot end-
effector with respect to the robot base (i.e., several possible sets {θ1, θ2, θ3, θ4, θ5, θ6}). The simplest way
to describe how the robot is postured, is by giving its set of joint angles. This set will be referred to as
the joint set, and occasionally as joint position.

For example, in Figure 2, the joint set is {0°, 0°, 0°, 0°, 0°, 0°}, although, it could have been {0°, 0°, 0°, 0°,
0°, 360°}, and you wouldn't be able to tell the difference.

A joint set completely defines the relative poses (i.e., the "arrangement," of the seven robot links,
starting with the base and ending with the end-effector). This arrangement is called the robot posture.
Thus, the joint sets {θ1, θ2, θ3, θ4, θ5, θ6} and {θ1, θ2, θ3, θ4, θ5, θ6 + ct360°}, where −180° < θ6 ≤ 180° and
ct is the axis 6 turn configuration, correspond to the same robot posture. Therefore, a joint set has the
same information as a robot posture AND an axis 6 turn configuration.

1.2. Configurations, singularities and workspace

1.2.1 Inverse kinematic solutions and configuration parameters
Meca500's inverse kinematics generally provide up to eight feasible robot postures for a desired pose
of the TRF with respect to the WRF (Figure 4), and many more joint sets (since if θ6 is a solution, then
θ6 ± n360°, where n is an integer, is also a solution). Each of these solutions is associated with one of
eight robot posture configurations, defined by three parameters: cs, ce and cw. Each of these parameters
corresponds to a specific geometric condition on the robot posture (see Figure 5):

 • cs (shoulder configuration parameter):

 – cs = 1, if the wrist center (where the axes of joints 4, 5 and 6 intersect) is on the "front" side of
the plane passing through the axes of joints 1 and 2 (see Figure 5a). The condition cs = 1 is often
referred to as "front".

 – cs = −1, if the wrist center is on the "back" side of this plane (see Figure 5c).

 • ce (elbow configuration parameter):

 – ce = 1, if θ3 > −arctan(60/19) ≈ −72.43° ("elbow up" condition, see Figure 5d);
 – ce = −1, if θ3 < −arctan(60/19) ≈ −72.43° ("elbow down" condition, see Figure 5f).

 • cw (wrist configuration parameter):

 – cw = 1, if θ5 > 0° ("no flip" condition, see Figure 5g);
 – cw = −1, if θ5 < 0° ("flip" condition, see Figure 5i).

Figure 4 shows an example with all eight possible robot postures, described by the posture configuration
parameters {cs, ce, cw}, for the pose {77 mm, 210 mm, 300 mm, −103°, 36°, 175°} of the FRF with respect
to the BRF.

Figure 5 shows an example of each robot posture configuration parameter, and limit conditions, which
are called singularities. Note that the popular terms front/back and elbow-up/elbow-down are misleading
as they are not relative to the robot base but to specific planes that move when some of the robot joints
rotate.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 5

BASIC THEORy ANd dEfINITIONS

(a) {1, 1, 1} (b) {1, 1, −1} (c) {1, −1, 1} (d) {1, −1, −1}

(e) {−1, 1, 1} (f) {−1, 1, −1} (g) {−1, −1, 1} (h) {−1, −1, −1}

Figure 4: An example showing all eight possible robot postures

The robot calculates the solution to the inverse kinematics that corresponds to the desired posture
configuration, {cs, ce, cw}, defined by the SetConf command. In addition, it solves θ6 by choosing the
angle that corresponds to the desired turn configuration, ct (an integer in the range ±100), defined by
the SetConfTurn command. The turn is therefore the last inverse kinematics configuration parameter.

Both the turn configuration and the set of robot posture configuration parameters are needed to
pinpoint the solution to the robot inverse kinematics (i.e., to pinpoint the joint set corresponding to the
desired pose). However, there are major differences between the turn and robot posture configuration
parameters; mainly that the change of turn does not involve singularities. This is why different
commands are used (SetConf and SetConfTurn, SetAutoConf and SetAutoConfTurn, etc.).

6 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

(a) cs = 1, front (b) shoulder singularity (c) cs = −1, back

(d) ce = 1, elbow up (e) elbow singularity (f) ce = −1, elbow down

(g) cw = 1, noflip (h) wrist singularity (i) cw = −1, flip

Figure 5: Posture configuration parameters and the three types of singularities

Though it is possible to calculate the optimal (the shortest move from current robot position) inverse
kinematic solution (commands SetAutoConf and SetAutoConfTurn), we highly recommend that you
always specify the desired values for the configurations parameters (with the commands SetConf and
SetConfTurn) for every Cartesian-coordinates motion command (i.e., MovePose and the various MoveLin*
commands), when programming your robot in online mode.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 7

BASIC THEORy ANd dEfINITIONS

Thus, if you are teaching the robot position and want that later its end-effector moves to the current
pose along a linear path, you need to record not only the current pose of the TRF with respect to
the WRF (by retrieving it with GetRtCartPos), but also the definitions of the TRF and the WRF (with
GetTrf and GetWrf), and finally the corresponding configuration parameters (with GetRtConf and
GetRtConfTurn). Then, when you later want to approach this robot position with MoveLin from a starting
robot position, you need to make sure the robot is already in the same robot posture configuration and
that θ6 is no more than half a revolution away from the desired value. If, however, you do not need the
robot's TCP to follow a linear trajectory, then you should better get the current joint values only (using
GetRtJointPos) and later go to that robot position using the MoveJoints command, thus not having to
record and then specify the four configuration parameters.

1.2.2 Automatic configuration selection
The automatic configuration selection should only be used once you understand how this selection is
done, and mainly while programming and testing. For example, when jogging in Cartesian space with
the Meca500 web interface, the automatic configuration selection is always enabled. Or, if a target
pose is identified in real-time based on input from a sensor (e.g., a camera), enabling the automatic
configuration selection will increase your chances of reaching that pose, and in the fastest way.

Figure 6 illustrates how the automatic and manual configuration selections work.

MovePose

1 2

Notes:

1. SetConf(cs,ce,cw) disables “AutoConf”; SetAutoConf(1) disables the desired posture setting. When SetAutoConf(0)
is executed, the new desired posture configuration will be the one corresponding to the current robot position.
2. SetConfTurn(ct) disables “AutoConfTurn”; SetAutoConfTurn(1) disables the desired turn setting. When
SetAutoConfTurn(0) is executed, the new desired turn will be the one corresponding to the current value of θ6.
3. MoveJoints* ignores any desired posture or turn configuration and, inversely, has no effect on the posture and turn
configuration settings.
4. MovePose will respect any desired posture or turn configuration, as long as the desired robot position is reachable.
5. If a desired posture configuration is set, MoveLin or MoveLinRel* will be executed only if the initial and final posture
configurations are the same as the desired one, while MoveLinVel* will start being executed only if the initial posture
configuration is the same as the desired one and will stop if the robot arrives at a singularity.
6. If a desired turn configuration is set, MoveLin or MoveLinRel* will be executed only if the initial and final turn
configurations are the same as the desired one, while MoveLinVel* will start being executed only if the initial turn
configuration is the same as the desired one and will stop if joint 6 has to change its turn configuration.
7. With “AutoConf” enabled, the robot may change its posture if it passes via certain singularities with a MoveLin*.
8. With “AutoConfTurn” enabled, the robot may change its turn configuration with a MoveLin*.

MoveLin
MoveLinRelTRF
MoveLinRelWRF
MoveLinVelTRF
MoveLinVelWRF

MoveJoints3

MoveJointsRel3

MoveJointsVel3 5/6

SetConf/SetConfTurn

SetAutoConf/SetAutoConfTurn

4

7/8

4

Figure 6: Effect of configuration parameters on robot movement commands

8 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

Firstly (Figure 6, notes 1 and 2), setting a desired posture or turn configuration (with SetConf or
SetConfTurn, respectively) disables the automatic posture or turn configuration selection, respectively,
which are both set by default. Inversely, enabling the automatic posture or turn configuration selection,
with SetAutoConf(1) or SetAutoConfTurn(1), respectively, removes the desired posture or turn
configuration, respectively. At any moment, if SetAutoConf(0) or SetAutoConfTurn(0) is executed, the
robot posture or turn configuration of the current robot position is set as the desired posture or turn
configuration, respectively.

Secondly (Figure 6, note 3), the commands MoveJoints, MoveJointsRel, and MoveJointsVel ignore
the automatic and manual configuration selections. Thus, the robot may end up in a posture or
turn configuration different from the desired ones, if such were set. If you want to update the
desired configurations with the current ones, simply execute the commands SetAutoConf(0) or
SetAutoConfTurn(0).

Thirdly, MovePose respects any desired posture or turn configuration, as long as the desired robot
position is reachable (Figure 6, note 4). In contrast, if automatic posture and/or turn configuration
selection is enabled, MovePose will choose the joint position, corresponding to the desired end-effector
pose, that is fastest to reach, and that satisfies the desired posture or turn configuration, if any.

Fourthly, in the case of MoveLin* commands, the desired posture and turn configurations will force the
linear move to remain within the specified configuration or turn (Figure 6, notes 5 and 6). This means
that a MoveLin or MoveLinRel* command will be executed only if the posture and turn configurations
of the initial and final robot positions are the same as the desired configurations. In the case of
MoveLinVel*, the robot will start to move only if the posture and turn configurations of the initial and
final robot positions are the same as the desired configurations, and will stop if desired configuration
parameter has to change. When automatic configuration selection ("AutoConf") is enabled, a MoveLin*
command may lead to changing the posture (if passing through a wrist or shoulder singularity) or turn
configuration along the path.

Finally, note that there is currently no way of specifying only one of the posture configuration
parameters and leaving the choice of the others to the robot controller. However, there is an indirect
way to specify the elbow and wrist configurations, though this can't be done "on the fly". Indeed, if you
prefer to always stick to one of the two possible wrist configurations, you can simply limit the range of
joint 5, to either positive or non-negative values, using the command SetJointLimits. Similarly, you can
fix the elbow configuration parameter by setting the range of joint 3 to be always smaller or larger than
−arctan(60/19) ≈ −72.43°.

1.2.3 Workspace and singularities
Users often oversimplify the workspace of a six-axis robot arm as a sphere of radius equal to the reach
of the robot (the maximum distance between the axis of joint 1 and the center of the robot's wrist). The
truth is that the Cartesian workspace of a six-axis industrial robot is a six-dimensional entity: the set of
all attainable end-effector poses (see our tutorial on workspace, available on our web site). Therefore,
the workspace of a robot depends on the choice of TRF. Worse yet, as we saw in the preceding section,
for a given end-effector pose, we can generally have eight different robot postures (Figure 4). Thus, the
Cartesian workspace of a six-axis robot arm is the combination of eight workspace subsets, one for
each the eight robot posture configurations. These eight workspace subsets have common parts, but
there are also parts that belong to only one subset (i.e, there are end-effector poses accessible with only
one configuration, because of joint limits). Therefore, in order to make optimal use of all possible end-

https://www.mecademic.com/en/what-is-the-workspace-of-a-typical-six-axis-industrial-robot-arm

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 9

BASIC THEORy ANd dEfINITIONS

effector poses, the robot must often pass from one subset to the other. These passages involve so-called
singularities and are problematic when the robot's end-effector is to follow a specific Cartesian path.

Any six-axis industrial robot arm has singularities (see our tutorial on singularities). However, the
advantage of robot arms like the Meca500, where the axes of the last three joints intersect at one point
(the center of the robot's wrist), is that these singularities are very easy to describe geometrically (see
Figure 5). In other words, it is very easy to know whether a robot posture is close to singularity in the
case of the Meca500.

In a singular robot posture, some of the joint set solutions corresponding to the pose of the TRF may
coincide, or there may be infinitely many joint sets. The problem with singularities is that at a singular
robot posture, the robot's end-effector cannot move in certain directions. This is a physical blockage,
not a controller problem. Thus, singularities are one type of workspace boundary (the other type occurs
when a joint is at its limit, or when two links interfere mechanically).

Take the Meca500, for example, at its zero posture (Figure 1). At this robot posture, the end-effector
cannot be moved laterally (i.e., parallel to the y axis of the BRF); it is physically blocked. Technically, it
could move, but it would need to rotate joints 4 and 6 a quarter of turn in opposite directions first. Thus,
singularities are not some kind of purely mathematical problem. They represent actual physical limits.

There are three types of singular robot positions, and these correspond to the conditions under which
the configuration parameters cs, ce, and cw are not defined. The most common singular robot posture
is called a wrist singularity and occurs when θ5 = 0° (Figure 5h). In this singularity, joints 4 and 6 can
rotate in opposite directions at equal velocities while the end-effector remains stationary. You will run
into this singularity frequently. The second type of singularity is called an elbow singularity (Figure 5f). It
occurs when the arm is fully stretched (i.e., when the wrist center is in one plane with the axes of joints 2
and 3). In the Meca500, this singularity occurs when θ3 = − arctan(60/19) ≈ −72.43°. You will run into this
singularity when you try to reach poses that are too far from the robot base. The third type of singularity
is called a shoulder singularity (Figure 5h). It occurs when the center of the robot's wrist lies on the axis
of joint 1. You will run into this singularity when you work too close to the axis of joint 1.

1.2.4 Crossing singularities with linear Cartesian-space movements
Although singularities can be a nuisance when controlling the robot in Cartesian space and should
usually be avoided in production mode, we have made it possible to cross them to facilitate
programming our robot. With the release of firmware 9.1, the Meca500 can start at or pass through
wrist and shoulder singularities, while executing any MoveLin* command, or end at any singularity
while executing a MoveLin* or MovePose command. Furthermore, the passage respects the posture
configuration selection settings (Figure 6). Figure 7 illustrates how this feature makes it possible to follow
longer linear paths. In that figure, we start from an elbow singularity, pass through a wrist singularity,
then through a shoulder singularity, and then end at another elbow singularity, all with a single
MoveLin* command, and in "AutoConf".

There are two possible situations when crossing a wrist singularity. Consider Figure 8a, where AutoConf
is enabled, the robot starts from robot position A, passes without any interruption through the singular
configuration Z1 (where all joints are at zero degrees) and goes to robot position B, all with a single
MoveLin* command. In the process, the robot changes the posture parameter cw from 1 to −1. However,
if you execute SetConf(1,1,1), then request the robot to move with MoveLin* to the end-effector pose
B, starting from robot position A, the robot will refuse the motion, since that would require joint 4 to
rotate 180° or −180° when reaching robot position Z1. This is impossible since the range of joint 4 is
±170°.

https://www.mecademic.com/en/what-are-singularities-in-a-six-axis-robot-arm

10 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

Figure 7: By crossing singularities, the Meca500 can execute longer linear movements

(a) A↔B via Z1, only possible with
AutoConf(1)

(b) C↔D1 via Z2, with AutoConf(1) (c) C↔D2 via Z2 and stationary
re-orientation, with SetConf(1,1, −1)

Figure 8: Crossing a wrist singularity with AutoConf(1) or with a desired posture configuration

Similarly, consider Figure 8b, where "AutoConf" is enabled, the robot starts from position C, passes
without any interruption through the singular configuration Z2 (where θ1 = θ2 = θ3 = θ5 = 0°, θ4 = 90°,
θ6 = −90°) and goes to robot position D1, all with a single MoveLin command. In the process, the
robot changes posture parameter cw from −1 to 1. However, as shown in Figure 8c, if you execute
SetConf(1,1,−1), then request the robot to move to the end-effector pose D1, starting from robot
position C, the robot will execute the MoveLin command, but when it reaches configuration Z2, joint 4
will rotate −180° and joint 6 will rotate 180°, at the same time while the end-effector will remain
stationary. After that, the robot will continue its linear motion and reach the robot position D2 (which
corresponds to the same pose as D1).

In contrast, since shoulder singularities are much less frequent, yet much more complex to handle, the
robot can currently cross them only in "AutoConf". More precisely, when executing a linear move, the
robot will never stop at a shoulder singularity to reorient its joints 1, 4 and 6 while keeping the end-
effector stationary. Thus, the motion sequence shown in Figure 9a cannot be executed with a single
MoveLin* command, whatever the state of posture configuration selection. However, in "AutoConf", you
can cross a shoulder singularity, as shown in Figure 9b.

To experiment with shoulder singularities, simply execute SetTRF(0,0,−70,0,0,0), to bring the TCP at
the wrist center, then SetWRF(0,0,0,0,0,0), and then bring the TCP to a position where its coordinates
x and y are zero.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 11

BASIC THEORy ANd dEfINITIONS

(a) Impossible motion sequence
with a single MoveLin command

(b) I↔J via H, with AutoConf(1)

Figure 9: Crossing a shoulder singularity can only be done with AutoConf(1) and implies a change of the posture
parameter cw

Passing exactly through singularities could be beneficial for some applications, but you must fully
understand the concept. Otherwise, you might end-up with highly suboptimal robot motions. For
example, consider the motion shown in Figure 9b. If you try to follow the same linear path, but one
micrometer closer to the z axis of the WRF, joints 4 and 6, or joints 1, 4 and 6, will rotate very fast while
the end-effector's speed will be significantly reduced, in a motion similar to what is shown in Figure 9a.
Indeed, passing through or close to singularities often leads to longer cycle times, and should be avoided
in production mode.

1.3. Key concepts for Mecademic robots

1.3.1 Homing
At power-up, the Meca500 knows the approximate angle of each of its joints, with a couple of degrees
of uncertainty. Each motor must make one full revolution to accurately find the exact joint angles. This
motion is the essential part of a procedure called homing.

During homing, all joints rotate simultaneously. Joints 1, 2 and 3 each rotate 3.6°, joints 4 and 5 rotate
7.2° each, and joint 6 rotates 12°. Then, all joints rotate back to their initial angles. The whole sequence
lasts three seconds. Make sure there is nothing that restricts these joint movements, or the homing
process will fail. Homing will also fail if any of the robot joints are outside their user-defined limits
(SetJointLimits).

Finally, if your robot is equipped with a Mecademic gripper, the robot controller will automatically detect
it, and the homing procedure will end by fully opening, then fully closing the gripper. Make sure there is
nothing that restricts the full range of motion of the gripper, except its fingers, while it is being homed.

The range of the absolute encoder of joint 6 is only ±420°. Therefore, you must always rotate
joint 6 within that range before deactivating the robot. Failure to do so may lead to an offset of
±120° in joint 6. If this happens, unpower the robot and disconnect your tooling. Then, power up
and activate the robot, perform its homing, and zero joint 6. If the screw on the robot's flange
is not as in Figure 1b, then rotate joint 6 to +720°, and deactivate the robot. Next, reactivate it,
home it and zero joint 6 again. Repeat one more time if the problem is not solved.

https://www.mecademic.com/en/end-effectors

12 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

Once the robot is homed, you do not need to home it again, even if you deactivate it, and then
reactivate it, unless you use the optional argument 1, i.e., ActivateRobot(1). In Meca500 R4, after
an E-Stop has been reset, you do not need to run the homing procedure again, unless the robot is
equipped with an MEGP 25* gripper (in that case, only the gripper is homed actually).

If you call the homing process, but homing was not needed, the robot will simply ignore the command
(though it will still respond with the [2002][Homing done.] message). If homing was needed only for the
MEGP 25* gripper, the gripper fingers will move, but not the robot.

1.3.2 Recovery mode
Once activated, if the robot is outside the user-defined joint limits (SetJointLimits) or too close to
an obstacle, homing the robot is either impossible or presents a risk of collision, it may be necessary
to move the robot before homing it, without manual intervention. Mecademic has implemented the
recovery mode (see the command SetRecoveryMode) for these situations. In this mode, virtually all
motion commands are allowed, as long as the robot is activated. However, if the robot was not homed
before enabling the recovery mode, it will be less accurate.

Recovery mode is also useful when the robot is already homed, but a collision resulted in some joints
rotating outside their user-defined joint limits (SetJointLimits). Simply enable the recovery mode,
forcing the robot to ignore the user-defined joint limits. If the robot was already homed when enabling
the recovery mode, its motions will be as precise as before.

However, whether the robot was homed or not, enabling the recovery mode will significantly limit the
joint and Cartesian velocities and accelerations, for safety reasons.

1.3.3 Blending
Industrial robots function similarly when moving in standard manner: either the robot is moved to
its end-effector to a certain pose using a Cartesian-space command, or its joints moved to a specified
joint set using a joint-space command. When the target is a joint set, you have no control over the path
that the robot's end-effector will follow. When the target is a pose, you can let the robot choose the
path or require the TCP to follow a linear path. If the robot must follow a complex curve (e.g., a gluing
application), the curve must be broken down into multiple linear segments. Then, instead of the robot
stopping at the end of each segment and making a sharp change in direction, the segments can be
blended. Think of blending as taking a rounded shortcut.

without blending
with blending

Figure 10: TCP path for two consecutive linear movements, with and without blending

Blending allows the trajectory planner to maintain the end-effector's acceleration to a minimum
between two position-mode joint-space movements (MoveJoints, MoveJointsRel, MovePose) or two
position-mode Cartesian-space movements (MoveLin, MoveLinRelWrf, MoveLinRelTrf). When blending is
activated, the trajectory planner will transition between the two paths using a blended curve (Figure 10).
The higher the TCP speed, the more rounded the transition will be (the radius of the blending cannot be
explicitly controlled, only the blending duration is configurable on the Meca500).

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 13

BASIC THEORy ANd dEfINITIONS

Even if blending is enabled, the robot will come to a full stop after a joint-space movement that is
followed by a Cartesian-space movement, or vice-versa. When blending is disabled, each motion will
begin from a full stop and end in a full stop. Blending is enabled by default. It can be completely disabled
or only partially enabled with the SetBlending command.

Furthermore, if blending is enabled, the gripper motion commands (MoveGripper, GripperOpen,
GripperClose) will not cause the robot to stop between two position-mode joint-space commands
(blending will occur normally). However, the gripper motion commands will force the robot to stop when
used between two position-mode Cartesian-space commands. Once the robot has come to a stop, the
gripper's fingers will start moving at the same time as the subsequent Cartesian-space movement.

In contrast, the SetValveState command, will not cause the robot to stop. Blending will occur normally,
and the SetValveState command will be executed at the mid-point of the blending path.

1.3.4 Position and velocity modes
As already mentioned in the previous section, the conventional way of moving an industrial robot is by
requesting that its end-effector move to a desired pose or that its joints rotate to a desired joint set. This
basic control method is called position mode. If the robot must also follow a linear path, then you must
use the Cartesian-space motion commands MoveLin, MoveLinRelTrf and MoveLinRelWrf. If the goal is
to get the robot's end-effector to a certain pose or to rotate the robot's joints to a certain joint set or by
a certain amount, then use the joint-space motion commands MovePose, MoveJoints, or MoveJointsRel,
respectively.

In position mode, with Cartesian-space motion commands, it is possible to specify the maximum
linear and angular velocities, and the maximum accelerations for the end-effector. However, you
cannot set a limit on the joint velocities and accelerations. Thus, if the robot executes a Cartesian-
space motion command and passes very close to a singular robot posture, even if its end-effector
speed and accelerations are very small, some joints may rotate at maximum speed and with maximum
acceleration. Similarly, with joint-space motion commands, it is possible to specify the maximum velocity
and acceleration of the joints, but it is impossible to limit either the velocity or the acceleration of the
robot's end-effector. Figure 11 summarizes the possible settings for the velocity and acceleration in
position mode.

There is a second method to control the Meca500, by defining either its end-effector velocity or its joint
velocities. This robot control method is called the velocity mode. Velocity mode is designed for advanced
applications such as force control, dynamic path corrections, or telemanipulation (for example, the
jogging feature in Meca500's web interface is implemented using velocity-mode commands).

Controlling the robot in velocity mode requires one of the three velocity-mode motion commands:
MoveJointsVel, MoveLinVelTrf or MoveLinVelWrf. Note that the effect from a velocity-mode motion
command lasts the time specified in the SetVelTimeout command or until a new velocity-mode
command is received. This timeout must be very small (the default value is 0.05 s, and the maximum
value 1 s). For the robot to continue moving after this timeout, another velocity-mode command can
be sent before this timeout. This new command will immediately replace the previous command and
restart the timeout. Position-mode and velocity-mode motion commands can be sent to the robot, in
any order. However, if the robot is moving in velocity mode, the only commands that will be executed
immediately, rather than after the velocity timeout, are other velocity-mode motion commands and
SetCheckpoint, GripperOpen and GripperClose commands.

14 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

BASIC THEORy ANd dEfINITIONS

There is a significant difference in the behavior of position- and velocity-mode motion
commands. In position mode, if a Cartesian-space motion command cannot be completely
performed due to a singularity or a joint limit, the motion will normally not start and a motion
error will be raised, that must be reset.
In velocity mode, if the robot runs into a singularity or a joint limit, it will simply stop without
raising an error. Furthermore, the velocity of the robot's end-effector or of the robot joints is
directly controlled, but is subject to the constraint set by the SetJointVelLimit command. The
SetJointAcc command sets the joint acceleration for MoveJointsVel only. The SetCartAcc sets
the end-effector acceleration for MoveLinVelTrf and MoveLinVelWrf only (see Figure 11).

SetCartLinVel(mm/s)
SetCartAngVel(°/s)

SetJointVel(%)

SetCartAcc(%)

MoveJointsVel(°/s, °/s, °/s, °/s, °/s, °/s)
MoveLinVelTrf(mm/s, mm/s, mm/s, °/s, °/s, °/s)
MoveLinVelWrf(mm/s, mm/s, mm/s, °/s, °/s, °/s)

MoveLin(mm, mm, mm, °, °, °)
MoveLinRelTrf(mm, mm, mm, °, °, °)
MoveLinRelWrf(mm, mm, mm, °, °, °)

MoveJoints(°, °, °, °, °, °)
MoveJointsRel(°, °, °, °, °, °)
MovePose(mm, mm, mm, °, °, °)

SetVelTimeout(s)

SetJointAcc(%)

Cartesian spaceJoint space

Position
mode

Velocity
mode

SetJointVelLimit(%)

Figure 11: Settings that influence the robot motion in position and velocity modes

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 15

TCP/IP COMMUNICATION

2. TCP/IP COMMUNICATION

The Meca500 robot must be connected to a computer or to a PLC over Ethernet. Commands may be
sent through Mecademic's web interface or through a custom computer program using either the
TCP/IP protocol, which is detailed in the remainder of this Section 2, or any of three cyclic protocols,
which will be detailed in the remainder of this manual. When the Meca500 communicates using the
TCP/IP protocol, it uses null-terminated ASCII strings. The default robot IP address is 192.168.0.100,
and its default TCP port is 10000, referred to as the control port. Commands to and messages from
the robot are sent over the control port. The robot will periodically send data over TCP port 10001,
referred to as the monitoring port, at the rate specified by the SetMonitoringInterval command. This
data includes the joint set and TRF pose (only when it changes), and other optional data enabled with
the SetRealTimeMonitoring command. To avoid desynchonization between the data received from
both parts, it is possible to send a copy of the monitoring port data to the control port data with the
SetCtrlPortMonitoring command.

When using the TCP/IP protocol, the Meca500 can interpret two types of instructions: motion commands
and request commands. Every command must end with the ASCII NUL character (\0) or end-of-line
character (\n). Commands are not case-sensitive.

Some command descriptions refer to default values: these are essentially variables that are initialized
every time the robot is activated. In contrast, certain parameter values are persistants: they have
manufacturer's default values, but the changes you make to these are written on an SD drive and persist
even if you power off the robot.

2.1. Motion commands
Motion commands are used to construct a trajectory for the robot. When the Meca500 receives a
motion command, it places it in a motion queue. The command will be run once all preceding commands
have been executed.

Most motion commands have arguments, but not all have default values (e.g., the argument for the
command Delay). The arguments for most motion commands are IEEE-754 floating-point numbers,
separated by commas and spaces (optional).

Motion commands do not generate a direct response and the only way to know exactly when a certain
motion command has been executed is to use the command SetCheckpoint (a response is then sent
when the checkpoint has been reached).

The robot sends a end-of-movement message (EOM, code 3004) whenever it has stopped moving, if
this option is activated with SetEom. Example: if three MoveJoints commands are sent with blending
enabled, the robot will send an EOM message only after all three MoveJoints commands have been
executed and the robot has come to a complete stop.

Furthermore, by default, the robot sends an end-of-block message (EOB, code 3012) every time the robot
has stopped moving and its motion queue is empty. For example, if both EOM and EOB messages are
enabled, and you immediately send a MoveJoints, SetTrf, MovePose and Delay command one after the
other, the robot will send an EOM message when it has stopped, and then an EOB message as soon as
the delay has elapsed.

Note that EOB and EOM messages should not be used to detect whether a sequence of motion
commands has been executed: communication delays mean that the robot may send an EOB message

16 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

when it has finished processing all the previously received commands, even though there are more
commands stacking up to be processed in the communication channel (between robot and application).
Using the SetCheckpoint command is the best way to follow the sequence of execution of commands.

Finally, motion commands can generate errors, explained in Section 2.5.1.

2.1.1 delay(t)
This command is used to add a time delay after a motion command. In other words, the robot
completes all movements sent before the Delay command and stops temporarily. (In contrast, the
PauseMotion command interrupts the motion as soon as received by the robot.)

Arguments
 • t: desired pause duration in seconds.

2.1.2 GripperOpen/GripperClose
These commands are used to open or close MEGP 25E or MEGP 25LS grippers. The gripper will move
its fingers apart or together until the grip force reaches 40 N. You can reduce this maximum grip
force using the SetGripperForce command. You can also control the speed of the gripper with the
SetGripperVel command.

By default, the GripperOpen and GripperClose commands open or close the gripper fingers until
resistance is met. However, a maximum opening or closing distance can be set using the command
SetGripperRange.

The GripperOpen and GripperClose commands behave like a robot motion command, and
will be executed only after the preceding motion command has been completed. However, if a
robot motion command is sent after either command, the robot will start executing the motion
command without waiting for the gripper to finish its action. You must therefore send a Delay
command after these commands.

2.1.3 MoveGripper(d)
The MEGP 25E and MEGP 25LS grippers are equipped with incremental encoders, so it is impossible to
directly measure the absolute positions of the gripper jaws. Thus, during the homing of the robot, the
gripper is also homed by completely closing and then opening its fingers, until resistance is met in each
direction. The maximum fingers opening is detected and is a positive number not larger than 6 mm
(MEGP 25E) or 48 mm (MEGP 25LS). Most importantly, the fingers opening, a non-negative distance,
is defined as the sum of the distances traveled by each jaw from their fully-closed positions detected
during homing.

The MoveGripper command makes the gripper fingers move towards the specified fingers opening.

Arguments
 • d: desired fingers opening, a non-negative value in mm, from 0 to the maximum fingers opening
detected during homing.

Unlike other position-mode Move* commands, MoveGripper command does not return any error if
the desired finger opening is not reached because of an object limiting the movement of the gripper
fingers. The fingers will simply continue to force in the direction of the desired fingers opening with

https://www.mecademic.com/en/megp25e-electric-parallel-gripper
https://www.mecademic.com/en/megp25ls-electric-gripper
https://www.mecademic.com/en/megp25e-electric-parallel-gripper
https://www.mecademic.com/en/megp25ls-electric-gripper

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 17

TCP/IP COMMUNICATION

the force set by the SetGripperForce command, and the "holding part" gripper status will be true (see
GetRtGripperState). If, somehow, the object is removed, the fingers will then move to the desired
fingers opening. Recall that you can reduce the grip force with the SetGripperForce command. In
addition, you can control the speed of the gripper with the SetGripperVel command.

The MoveGripper command behaves like a motion command, and will be executed only after the
preceding motion command has been completed. However, if a robot motion command is sent
after this command, the robot will start executing the motion command without waiting for the
gripper to finish its action. You must therefore send a Delay command after the MoveGripper
command.

2.1.4 MoveJoints(θ1,θ2,θ3,θ4,θ5,θ6)
This command makes the robot simultaneously move all Its joints to the specified joint set, as fast as
possible but subject to the limits set by the commands SetJointVel and SetJointVelLimit. All joints
start and stop moving at the same time, so there is generally only one joint that moves at the joint
velocity indirectly specified in SetJointVel and SetJointVelLimit. The robot takes a linear path in the
joint space, but nonlinear in the Cartesian space. Therefore, the TCP trajectory is not easily predictable
(Figure 12). Finally, with MoveJoints, the robot can cross singularities without any problem.

Arguments
 • θi: the (admissible) angle of joint i (i = 1, 2, ..., 6), in degrees. The admissible default ranges for the
joint angles are as follows:

−175° ≤ θ1 ≤ 175°,
−70° ≤ θ2 ≤ 90°,
−135° ≤ θ3 ≤ 70°,
−170° ≤ θ4 ≤ 170°,
−115° ≤ θ5 ≤ 115°,
−36,000° ≤ θ6 ≤ 36,000°.

These ranges can be further limited with the command SetJointLimits.

Figure 12: End-effector motion when using the MoveJoints or MovePose commands

18 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.1.5 MoveJointsRel(Δθ1,Δθ2,Δθ3,Δθ4,Δθ5,Δθ6)
This command has the exact behavior as the MoveJoints command, but instead of accepting the
desired (target) joint set as arguments, it takes the desired relative joint displacements. The command is
particularly useful when you need to displace certain joints a certain amount, but you do not know the
current joint position and wish to avoid having to use the command GetRtTargetJointPos.

Arguments
 • ∆θi: the desired relative displacement of joint i (i = 1, 2, ..., 6), in degrees. The value of the argument
can be positive, negative or even zero.

2.1.6 MoveJointsVel(θ̇1,θ̇2,θ̇3,θ̇4,θ̇5,θ̇6)
This command makes the robot rotate simultaneously its joints with the specified joint velocities. All
joint rotations start and stop at the same time. The path that the robot takes is linear in the joint space,
but nonlinear in the Cartesian space. Therefore, the TCP path is not easily predictable (Figure 12). With
MoveJointsVel, the robot can cross singularities without any problem.

Arguments
 • θ̇i the velocity of joint i (i = 1, 2, ..., 6), in °/s. The admissible ranges are as follows:

−150°/s ≤ θ̇1 ≤ 150°/s,
−150°/s ≤ θ̇2 ≤ 150°/s,
−180°/s ≤ θ̇3 ≤ 180°/s,
−300°/s ≤ θ̇4 ≤ 300°/s,
−300°/s ≤ θ̇5 ≤ 300°/s,
−500°/s ≤ θ̇6 ≤ 500°/s.

The specified desired joint velocities are modified proportionally by the joint velocity override
factor set by the command SetJointVelLimits(po), when po < 100. In R4, po can be greater than
100, but in that case, there will be a distortion, since not all joints can rotate faster than their
top rated velocities (e.g., joints 1 and 2 can rotate up to 150% faster, but joint 3 only 125%).

Note that the robot will decelerate to a full stop after a period defined by the command SetVelTimeout,
unless another MoveJointsVel command is sent. Also, bear in mind that the MoveJointsVel command,
unlike position-mode motion commands, generates no motion errors when a joint limit is reached. The
robot simply stops slightly before the limit.

2.1.7 MoveLin(x,y,z,α,β,γ)
This command makes the robot move its end-effector, so that its TRF ends up at a desired pose
with respect to the WRF while the TCP moves along a linear path in Cartesian space, as illustrated
in Figure 13. If the final (desired) orientation of the TRF is different from the initial orientation, the
orientation will be modified along the path using a minimum-torque path. However, the robot will not
accept the MoveLin command if the required end-effector reorientation is exactly 180°, because there
could be two possible paths.

With this command, normally, the initial and final robot postures have to be in the same configuration,
{cs, ce, cw}. Only in some very peculiar cases, where the path passes exactly through a shoulder or
wrist singularity, and when the automatic posture configuration selection is enabled, a change in cs

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 19

TCP/IP COMMUNICATION

or cw, respectively, is possible (see Section 1.2.4). If the complete motion cannot be performed due to
singularities or joint limits, it will not even start, and an error will be generated.

If you specify a desired turn configuration, the MoveLin command will be executed only if the initial and
final robot positions have the same turn configuration as the desired one.

Figure 13: The TCP path when using the MoveLin command

Arguments
 • x, y, z: the coordinates of the origin of the TRF with respect to the WRF, in mm;
 • α, β, γ: the Euler angles representing the orientation of the TRF with respect to the WRF, in degrees.

The desired Cartesian linear and angular velocity of the TRF with respect to the WRF are specified by the
commands SetCartLinVel and SetCartAngVel, respectively, but the joint velocities are limited by the
command SetJointVelLimit. There is no guarantee that desired linear and angular velocities will be
attained, but they will not be exceeded.

2.1.8 MoveLinRelTrf(x,y,z,α,β,γ)
This command has the same behavior as the MoveLin command, but allows a desired pose to be
specified relative to the current pose of the TRF. Thus, the arguments x, y, z, α, β, and γ represent the
desired pose of the TRF with respect to the current pose of the TRF (i.e., the pose of the TRF just before
executing the MoveLinRelTrf command).

As with the MoveLin command, if the complete motion cannot be performed, it will not even start and
an error will be generated.

Arguments
 • x, y, z: the position coordinates, in mm;
 • α, β, γ: the Euler angles, in degrees.

2.1.9 MoveLinRelWrf(x,y,z,α,β,γ)
This command is similar to the MoveLinRelTrf command, but instead of defining the desired pose with
respect to the current pose of the TRF it is defined with respect to a reference frame that has the same
orientation as the WRF but its origin is at the current position of the TCP.

20 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Arguments
 • x, y, z: the position coordinates, in mm;
 • α, β, γ: the Euler angles, in degrees.

2.1.10 MoveLinVelTrf(ẋ,ẏ,ż,ωx,ωy,ωz)
This command makes the robot move its TRF with the specified Cartesian velocity, defined with respect
to the TRF, under the joint velocity constraint set by the command SetJointVelLimit.

Arguments
 • ẋ, ẏ, ż: the components of the linear velocity of the TCP with respect to the TRF, in mm/s;
 • ωx, ωy, ωz: the components of the angular velocity of the TRF with respect to the TRF, in °/s.

Note that the robot will come to a complete stop after a period of time defined by the SetVelTimeout
command, unless another MoveLinVelTrf or a MoveLinVelWrf command is sent and, of course, unless
a PauseMotion command is sent or some motion limit is encountered. Also, bear in mind that this
command, unlike position-mode motion commands, generates no motion errors when a joint limit
(including the desired turn configuration) or a singularity that cannot be crossed is reached. The robot
simply stops before the limit.

2.1.11 MoveLinVelWrf(ẋ,ẏ,ż,ωx,ωy,ωz)
This command makes the robot move its TRF with the specified Cartesian velocity, defined with respect
to the WRF, under the joint velocity constraint set by the command SetJointVelLimit.

Arguments
 • ẋ, ẏ, ż: the components of the linear velocity of the TCP with respect to the WRF, in mm/s;
 • ωx, ωy, ωz: the components of the angular velocity of the TRF with respect to the WRF, in °/s..

Note that the robot will come to a complete stop after a period of time defined by the SetVelTimeout
command, unless another MoveLinVelWrf or a MoveLinVelTrf command is sent and, of course, unless
a PauseMotion command is sent or some motion limit is encountered. Also, bear in mind that this
command, unlike position-mode motion commands, generates no motion errors when a joint limit
(including the desired turn configuration) or a singularity that cannot be crossed is reached. The robot
simply stops before the limit.

2.1.12 MovePose(x,y,z,α,β,γ)
This command makes the robot move its TRF to a specific pose with respect to the WRF. Essentially,
the robot controller calculates all possible joint sets corresponding to the desired pose, including those
corresponding to a singular robot posture. Then, it either chooses the joint set that corresponds to
the desired robot posture and turn configurations, if such were set, or the one that is fastest to reach.
Finally, it executes internally a MoveJoints command with the chosen joint set.

Thus, all joint rotations start and stop at the same time, and move as fast as possible, but subject to
the limits set by the commands SetJointVel and SetJointVelLimit. The path the robot takes is linear
in the joint space, but nonlinear in Cartesian space. Therefore, the path the TCP will follow to its final
destination is not easily predictable, as illustrated in Figure 12.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 21

TCP/IP COMMUNICATION

Using this command, the robot can cross any singularity or start from a singular robot posture, or even
go a singular robot posture, without any peculiarities. As with the MoveJoints command, if the complete
motion cannot be performed due to joint limits, it will not even start, and an error will be generated.

Arguments
 • x, y, z: the coordinates of the origin of the TRF with respect to the WRF, in mm;
 • α, β, γ: the Euler angles for the orientation of the TRF with respect to the WRF, in degrees.

2.1.13 SetAutoConf(e)
This command enables or disables the automatic posture configuration selection, to be observed in the
MovePose and MoveLin* commands. This automatic selection, in conjunction with the turn configuration
selection (Section 1.2.1 and Section 1.2.2), allows the controller to choose the “closest” joint set
corresponding to the desired pose. In the case of MoveLin* commands, enabling the automatic posture
configuration selection allows the change of configuration, but only if the path happens to pass exactly
through a wrist or shoulder singularity.

Arguments
 • e: enable (1) or disable (0) automatic posture configuration selection.

default values
SetAutoConf is enabled by default. If you disable it, the new desired posture configuration will be the
one corresponding to the current robot position, i.e., the one after all preceding motion commands
have been completed. Note, however, that if you disable the automatic posture configuration selection
in a singular robot posture, the controller will automatically choose one of the two, four or eight
boundary configurations. For example, if you execute SetAutoConf(0) while the robot is at the joint
set {0,0,0,0,0,0}, the new desired configuration will be {1,1,1}. Finally, the automatic robot configuration
selection is also disabled as soon as the robot receives the command SetConf.

2.1.14 SetAutoConfTurn(e)
This command enables or disables the automatic turn selection for joint 6 (Section 1.2.1 and
Section 1.2.2). It affects the MovePose command, and all MoveLin* commands. When the automatic turn
selection is enabled, and a MovePose command is executed, joint 6 will always take the shortest path,
and rotate no more than 180°. In the case of a MoveLin* command, however, enabling the automatic
turn selection simply allows the change of turn configuration along the linear move.

Arguments
 • e: enable (1) or disable (0) automatic turn configuration selection.

default values
SetAutoConfTurn is enabled by default. If you disable the automatic turn selection, the new desired turn
configuration will be the one corresponding to the current robot position, i.e., the one after all preceding
motion commands have been completed. Finally, the automatic turn configuration selection is also
disabled as soon as the robot receives the command SetConfTurn.

2.1.15 SetBlending(p)
This command enables/disables the robot's blending feature (Section 1.3.3). Note that there is blending
only between consecutive movements with the position-mode joint-space commands MoveJoints,

22 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

MoveJointsRel and MovePose, or between consecutive movements with the position-mode Cartesian-
space commands MoveLin, MoveLinRelTrf and MoveLinRelTrf. For example, there will never be
blending between the trajectories of a MovePose command followed by a MoveLin command.

Arguments
 • p: percentage of blending, ranging from 0 (blending disabled) to 100.

default values
Blending is enabled at 100% by default.

2.1.16 SetCartAcc(p)
This command limits the Cartesian acceleration (both the linear and the angular) of the TRF with respect
to the WRF during movements resulting from Cartesian-space commands (see Figure 11). Note that this
command makes the robot come to a complete stop, even if blending is enabled.

Arguments
 • p: percentage of maximum acceleration of the TRF, ranging from 0.001 to 600.

default values:
The default end-effector acceleration limit is 50%.

Note that the argument of this command is exceptionally limited to 600. This is because in firmware 8,
a change was made to allow the robot to accelerate much faster. For backwards compatibility, however,
100% now corresponds to 100% in firmware 7 and before.

2.1.17 SetCartAngVel(ω)
This command sets the desired and maximum angular velocity of the robot TRF with respect to its
WRF. It only affects the movements generated by the MoveLin, MoveLinRelTrf and MoveLinRelWrf
commands.

Arguments
 • ω: TRF angular velocity limit, in °/s, ranging from 0.001 to 1,000.

default values
The default end-effector angular velocity limit is 45°/s.

The actual angular velocity may be lower (but never higher) than requested in some parts or the
entirety of the linear path, in order to keep joint velocities within the limits set by the command
SetJointVelLimit and in order to satisfy the limit set by the command SetCartLinVel.

2.1.18 SetCartLinVel(v)
This command sets the desired and maximum linear velocity of the robot TRF with respect to its WRF. It
only affects the movements generated by the MoveLin, MoveLinRelTrf and MoveLinRelWrf commands.

Arguments
 • v: TCP velocity limit, in mm/s, ranging from 0.001 to 5,000..

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 23

TCP/IP COMMUNICATION

default values
The default TCP velocity is 150 mm/s.

The actual TCP velocity may be lower (but never higher) than requested in some parts or the
entirety of the linear path, in order to keep joint velocities within the limits set by the command
SetJointVelLimit and in order to satisfy the limit set by the command SetCartAngVel.

2.1.19 SetCheckpoint(n)
This command defines a checkpoint in the motion queue. Thus, if you send a sequence of motion
commands to the robot, then the command SetCheckpoint, then other motion commands, you will
be able to know the exact moment when the motion command sent just before the SetCheckpoint
command was completed. At that precise moment, the robot will send you back the response [3030][n],
where n is a positive integer number defined by you. If blending was activated, the checkpoint response
will be sent somewhere along the blending. If a checkpoint is the last queued command, in the absence
of blending with another command, the checkpoint response will be sent once the robot has come to a
stop (along with an EOB). Finally, note that you can use the same checkpoint number multiple times.

Using a checkpoint is the only reliable way to know whether a particular motion sequence was
completed. Do not rely on the EOM or EOB messages as they may be received well before the
completion of a motion or a motion sequence (or not at all, if these messages were not enabled).

Arguments
 • n: an integer number, ranging from 1 to 8,000.

Responses
[3030][n]

2.1.20 SetConf(cs,ce,cw)
This command sets the desired posture configuration to be observed in the MovePose and MoveLin*
commands (see Section 1.2.1 and Section 1.2.2). When a desired posture configuration is set, a MovePose
command will be executed only if the final robot position can be in the desired posture configuration. In
contrast, when a desired posture configuration is set, a MoveLin* command will be executed only if the
final robot position can be and the initial robot position already is in the desired posture configuration.
The posture configuration can be automatically selected, when executing a MovePose or MoveLin*
command, by using the SetAutoConf command. Using SetConf automatically disables the automatic
posture configuration selection.

Arguments
 • cs: shoulder configuration parameter, either −1 or 1.
 • ce: elbow configuration parameter, either −1 or 1.
 • cw: wrist configuration parameter, either −1 or 1.

default values
Automatic posture configuration selection is enabled by default (see SetAutoConf); when the robot
starts, there is no default desired posture configuration. Desired posture configurations must be
specified using the SetConf command or the SetAutoConf(0) command. The latter sets the desired
posture configuration to the one of the current robot posture.

24 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.1.21 SetConfTurn(ct)
This command sets the desired turn configuration for joint 6, ct, to be observed in the MovePose and
MoveLin* commands (see Section 1.2.1 and Section 1.2.2). When ct is set, a MovePose command is
executed only if the final robot position can be in the desired turn configuration. In contrast, when a
ct is set, a MoveLin* command will be executed only if the final robot position can be—and the initial
robot position already is—in the desired turn configuration. The turn configuration can be automatically
selected, when executing a MovePose or MoveLin* command, by using the SetAutoConf command. Using
SetConfTurn automatically disables the automatic turn configuration selection.

This command is only useful if you have a wired end-effector with long enough cables to allow joint 6
to rotate more than ±180°. For example, if using the MEGP 25E gripper, limit joint 6 to ±180° using
the SetJointLimits command and then use either SetAutoConfTurn(1) or SetConfTurn(0). If using
a cable-less end-effector, then the automatic turn configuration should never be disabled. However,
remember to always bring joint 6 within the ±420° range before powering the robot off (recall
Section 1.3.1).

Arguments
 • ct: turn configuration, an integer between −100 and 100.

The turn configuration parameter defines the desired range for joint 6, according to the following
equation: −180° + ct360° < θ6 ≤ 180° + ct360°.

default values
Enabled by default (see SetAutoConfTurn), so when you start the robot, there is no default desired
turn configuration. The only way to set a desired turn configuration is to specify it with the command
SetConfTurn or to execute the command SetAutoConfTurn(0). The latter sets the desired turn
configuration to the one of the current position of joint 6.

2.1.22 SetGripperforce(p)
This command limits the grip force of Mecademic grippers.

Arguments
 • p: percentage of maximum grip force (~40 N), ranging from 5 to 100.

default values
By default, the grip force limit is 50%.

2.1.23 SetGripperRange(dclosed,dopen)
This command sets the closed and open states of the gripper and is used mainly to redefine the actions
of the GripperClose and GripperOpen commands, respectively. The SetGripperRange command is
useful for the MEGP 25LS gripper. If, for example, you are manipulating parts that require fingers
opening between 10 mm and 20 mm, but the allowable range of the gripper as detected during
the homing is 48 mm, it would be more efficient to redefine the actions of the GripperClose and
GripperOpen commands by calling SetGripperRange(8,22), or else the fingers will move more than
necessary, and therefore increase your cycle time.

The SetGripperRange command does not limit the accessible range of the gripper, in contrast to the
SetJointLimits command, which limits the range of a joint. For example, if during homing, the robot
detected that the range for the finger opening was [0, 15], and then you sent SetGripperRange(8,13),

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 25

TCP/IP COMMUNICATION

you can still open the gripper more with MoveGripper(14). However, using the commands GripperOpen
and GripperClose will be equivalent to using the commands MoveGripper(8) and MoveGripper(13),
respectively. Furthermore, when the fingers opening is 8 mm (or less) or 13 mm (or more), the state of
the gripper will be “gripper open” or “gripper close”, respectively (see GetRtGripperState).

Arguments
 • dclosed: fingers opening that should correspond to closed state, in mm;
 • dopen: fingers opening that should correspond to open state, in mm.

default values
By default, the gripper closed and open states are those detected during the homing of the gripper, i.e.,
dclosed = 0 and dopen ≤ 6, in the case of the MEGP 25E gripper, or dopen ≤ 48, in the case of the MEGP 25LS
gripper. To go back to these default values, use SetGripperRange(0,0).

2.1.24 SetGripperVel(p)
This command limits the velocity of the gripper fingers (with respect to the gripper).

Arguments
 • p: percentage of maximum finger velocity (~100 mm/s), ranging from 5 to 100.

default values
By default, the finger velocity limit is 50%.

2.1.25 SetJointAcc(p)
This command limits the acceleration of the joints during movements resulting from joint- space
commands (see Figure 11). Note that this command makes the robot stop, even if blending is enabled.

Arguments
 • p: percentage of maximum acceleration of the joints, ranging from 0.001 to 150.

default values
The default joint acceleration limit is 100%.

The argument of this command is exceptionally limited to 150. This is because in firmware 8, a scaling
was applied so that if this argument is kept at 100, most joint-space movements are feasible even at
full payload. More precisely, if you are upgrading from firmware 7 and you want to keep the same joint
accelerations, you need to multiply the arguments of your SetJointAcc commands by the factor 1.43.

2.1.26 SetJointVel(p)
This command specifies the maximal velocities of the robot joints during movements generated by the
MovePose, MoveJoints, and MoveJointsRel commands.

Arguments
 • p: percentage of R3 top rated joint velocities, ranging from 0.001 to 100, for R3, and to 150, for R4.

default values
By default, p = 25.

Note that the value of p is overridden by the argument of the command SetJointVelLimit(po) if po < p.

26 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

It is not possible to limit the velocity of only one joint. With SetJointVel and SetJointVelLimit, the
maximum velocities of all joints are limited proportionally. The maximum velocity of each joint will be
reduced—in the case of revisions R3 and R4—to a percentage p of its top rated velocity, i.e.,

 – 150°/s for joints 1 and 2;
 – 180°/s for joint 3;
 – 300°/s for joints 3 and 4;
 – 500°/s for joint 6.

In the case of R4, for backward compatibility, p can be greater than 100, up to 150, and the maximum
velocity of each joint can be increased

 – up to 225°/s for joints 1 and 2 (i.e., up to 150%);
 – up to 225°/s for joint 3 (i.e., up to 125%);
 – up to 350°/s for joints 4 and 5 (i.e., up to 117%);
 – up to 500°/s for joint 6 (i.e., the joint velocity cannot exceed its top rated velocity).

Thus, for example, if p = 140 (and po > p), the velocity of joints 1 and 2 will be limited to
min(150*1.4, 225) = 210°/s, the velocity of joint 3 will be limited to min(180*1.4, 225) = 225°/s, etc.

2.1.27 SetJointVelLimit(po)
In revision 4 of the Meca500, we have introduced the possibility to go beyond the maximum rated joint
velocities in any type of movement. For compatibility reasons, we introduced this new command.

The SetJointVelLimit overrides the default joint velocity limits. Unlike the SetJointVel command, this
command affects the movements generated by all Move* commands (even the MoveLinVel* ones).

Arguments
 • po: percentage of top rated joint velocities, ranging from 0.001 to 100, for R3, and to 150, for R4.

default values
By default, po = 100.

As already mentioned in the SetJointVel command, in both revisions of Meca500, the top rated velocity
of joints 1 and 2 is 150°/s, of joint 3 is 180°/s, of joints 4 and 5 is 300°/s, and of joint 6 is 500°/s. In the
case of the R4, the maximum velocity of each joint can be increased up to 225°/s for joints 1, 2 and 3,
and up to 350°/s for joints 4 and 5. The velocity of joint 6 cannot be increased over its top rated limit of
500°/s. Thus, for example, if po = 140, the velocity of joints 1 and 2 will be limited to min(150*1.4, 225) =
210°/s, the velocity of joint 3 will be limited to min(180*1.4, 225) = 225°/s, etc., during a MoveLin motion.

! In future firmware releases, joints 3, 4, 5, and 6 in R4 may be able to rotate faster, up to 150% of
their top rated joint velocities. Thus, in future, for po > 100, R4 motions may be faster.

2.1.28 SetTorqueLimits(p1,p2,p3,p4,p5,p6)
This command sets the thresholds for the torques applied to each joint, as percentages of the maximum
allowable torques that can be applied at each joint. When a torque limit is exceeded, a customizable
event is created. The event behavior can be set by the command SetTorqueLimitsCfg.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 27

TCP/IP COMMUNICATION

This command is intended only for improving the chances of protecting your robot, its end-effector, and
the surrounded equipment, in the case of a collision. The torque in each joint is estimated by measuring
the current in the corresponding drive.

Unlike the SetJointLimits commands, the SetTorqueLimits command can only be applied after the
robot has been homed. Note that high accelerations or large movements may also produce high torque
peaks. Therefore, you should rely on this command only in the vicinity of obstacles, for example, while
applying an adhesive. Remember that SetTorqueLimits is a motion command and will therefore be
inserted in the motion queue and not necessarily executed immediately.

Arguments
 • pi: percentage of the maximum allowable torque that can be applied at joint i, where i = 1, 2, ..., 6,
ranging from 0.001 to 100.

default values
By default, all six torque thresholds are set to 100%.

2.1.29 SetTorqueLimitsCfg(s,m)
This command sets the robot behavior when a joint torque exceeds the threshold set by the
SetTorqueLimits command. It also sets the filtering type used for accurate detection. It also sends a
torque limit status every time torque limit status changes (exceeded or not) for events severity greater
than 0. Torque limit error is sent when torque exceeds the limit for severity 4.

Arguments
 • s: integer defining the torque limit event severity as

 – 0, no action;
 – 1, trace warning;
 – 2, pause motion;
 – 3, clear motion;
 – 4, error.

 • m: integer defining the detection mode as 0, always detect; 1, skip detection during acceleration/
deceleration and blending.

default values
By default, the event severity is set to 0, and the detection mode to 1.

2.1.30 SetTrf(x,y,z,α,β,γ)
This command defines the pose of the TRF with respect to the FRF. Note that this command makes the
robot come to a complete stop, even if blending is enabled.

Arguments
 • x, y, z: the coordinates of the origin of the TRF with respect to the FRF, in mm;
 • α, β, γ: the Euler angles representing the orientation of the TRF with respect to the FRF, in degrees.

default values
By default, the TRF coincides with the FRF.

28 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.1.31 SetValveState(v1,v2)
This command is use to control independently each of the two valves in the MPM500 pneumatic module.

Arguments
 • v1: open (1), close (0) or keep unchanged (−1) valve 1;
 • v2: open (1), close (0) or keep unchanged (−1) valve 2.

default values
Both valves are closed by default, i.e., at power-up, and are automatically closed when the robot is
deactivated.

Responses
[2085][Command successful: '...'.]

Since the MPM500 is often used with pneumatic grippers, you can also use the command GripperOpen
instead of SetValveSate(1,0), and GripperClose instead of SetValveSate(0,1). However, note that
these commands do not have the same effect on blending (see Section 1.3.3).

2.1.32 SetVelTimeout(t)
This command sets the timeout after a velocity-mode motion command (MoveJointsVel,
MoveLinVelTrf, or MoveLinVelWrf), after which all joint speeds will be set to zero unless another
velocity-mode motion command is received. The SetVelTimeout command should be regarded simply
as a safety precaution.

Arguments
 • t: desired time interval, in seconds, ranging from 0.001 to 1.

default values
By default, the velocity-mode timeout is 0.050 s.

The deceleration period begins after the velocity timeout. The deceleration time will depend on
the current acceleration configured with SetJointAcc or SetCartAcc commands.

2.1.33 SetWrf(x,y,z,α,β,γ)
This command defines the pose of the WRF with respect to the BRF. Note that this command makes the
robot come to a complete stop, even if blending is enabled.

Arguments
 • x, y, z: the coordinates of the origin of the WRF with respect to the BRF, in mm;
 • α, β, γ: the Euler angles representing the orientation of the WRF with respect to the BRF, in degrees.

default values
By default, the WRF coincides with the BRF.

https://www.mecademic.com/en/pneumatic-module

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 29

TCP/IP COMMUNICATION

2.2. General request commands
Contrary to motion commands, request commands are executed immediately and all return a specific
response. For clarity, we have divided request commands into three groups. The majority of the
requests commands in this section are the most important request commands and serve mainly to
control the status of the robot (e.g., activate and home the robot) and to configure the robot.

In the following subsections, the request commands of general type are presented in alphabetical order.

2.2.1 ActivateRobot(e)
This command activates all motors, as well as the EOAT connected to the tool I/O port, and disables the
brakes on joints 1, 2, and 3.

Arguments
 • e: the argument is optional; if the argument is 1, the command forces a re-initialization of the
drives and homing is then required.

Responses
[2000][Motors activated.]

2.2.2 ActivateSim/deactivateSim
The Meca500 supports a simulation mode in which all of the robot's hardware including Mecademic's
EOAT (see SetExtToolSim) are simulated and nothing moves. This mode allows you to test programs
with the robot's hardware (i.e., hardware-in-the-loop simulation), without the risk of damaging the
robot or its surroundings. Simulation mode can be activated and deactivated with the ActivateSim and
DeactivateSim commands (this command can only be executed when the robot is deactivated).

Responses
[2045][The simulation mode is enabled.]
[2046][The simulation mode is disabled.]

2.2.3 ClearMotion
This command stops the robot movement in the same fashion as the PauseMotion command (i.e., by
decelerating). The rest of the trajectory is deleted. The command ResumeMotion must be sent to make
the robot ready to execute new motion commands.

Responses
[2044][The motion was cleared.]

2.2.4 deactivateRobot
This disables all motors, as well as the EOAT connected to the tool I/O port, and engages the
brakes on joints 1, 2, and 3. You must deactivate the robot in order to use certain commands (e.g.,
SetJointLimits, SetNetworkOptions). If you deactivate a robot that was already homed, and then
reactivate it, you do not need to home it again, unless it has an MEGP 25* gripper installed. In the latter
case, however, the homing process is performed only for the gripper, and so the robot does not move.
You also need to home the robot again if you reactivated it with ActivateRobot(1).

https://www.mecademic.com/en/end-effectors

30 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2004][Motors deactivated.]

Be deactivating the robot, you will lose all settings (parameters) that are not persistant, such as
the definitions of the TRF and the WRF, the desired turn of joint 6, etc.

2.2.5 BrakesOn/BrakesOff
These commands engages or disengages the brakes of joints 1, 2 and 3. When the brakes are released,
the robot will fall down. This command is only available when the robot is deactivated.

Responses
[2010][All brakes set.]
[2008][All brakes released.]

2.2.6 EnableEtherNetIp(e)
This command enables or disables EtherNet/IP slave stack, allowing the robot to be controlled by an
EtherNet/IP controller.

Arguments
 • e: enable (1) or disable (0) EtherNet/IP.

default values
EtherNet/IP is enabled when the robot is shipped from Mecademic. Changes in this setting have a
persistent effect (remain even after a powering the robot off).

2.2.7 EnableProfinet(e)
This command enables or disables PROFINET slave stack, allowing the robot to be controlled by a
PROFINET controller. Please note that enabling PROFINET also enables LLDP packets forwarding
between the two Ethernet ports of the robot.

Arguments
 • e: enable (1) or disable (0) PROFINET.

default values
PROFINET is disabled when the robot is shipped from Mecademic. Changes in this setting have a
persistent effect (remain even after a powering the robot off).

2.2.8 GetExtToolfwVersion
This command returns the firmware version of Mecademic's EOAT connected to the robot's tool I/O
port. The robot must be activated. If during the activation, the robot detects that the firmware version
of the EOAT is older than the firmware version of the robot, the [3039] response will be given, and the
activation process will fail. If no EOAT is detected, the x's in the [2086] message will be zeros.

Responses
[2086][vx.x.x]
[3039][External tool firmware must be updated.]

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 31

TCP/IP COMMUNICATION

2.2.9 GetfwVersion
This command returns the version of the firmware installed on the robot, even if the robot is not
activated.

Responses
[2081][vx.x.x]

2.2.10 GetModelJointLimits(n)
This command returns the default joint limits, i.e., those presented in Section 1.1.5.

Arguments
 • n: joint number, an integer ranging from 1 to 6.

Responses
[2113][n, θn,min, θn,max]

 – n: joint number, an integer ranging from 1 to 6;
 – θn,min: lower joint limit, in degrees;
 – θn,max: upper joint limit, in degrees.

2.2.11 GetProductType
This command returns the type (model) of the product.

Responses
[2084][Meca500]

2.2.12 GetRobotName
This command returns the robot's name, set with the command SetRobotName.

Note that the robot name is used as a host name when the robot's network configuration uses DHCP.

Responses
[2095][s]

 – s: string containing the robot's name.

2.2.13 GetRobotSerial
This command returns the serial number of the robot, for robots manufactured recently. For all other
robots, the serial number can only be found on the back of the robot's base.

Responses
[2083][robot's serial number]

2.2.14 Home
This command starts the robot and MEGP 25* gripper homing process (Section 1.3.1). While homing, it is
critical to remove any obstacles that could hinder the robot and gripper movements.

32 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2002][Homing done.]
[1032][Homing failed because joints are outside limits.]
[1014][Homing failed.]

The first response (2002) is sent if homing was completed successfully. The second response (1032)
is sent if the homing procedure failed because it was started while a robot joint was outside its user-
defined limits. The last response (1014) is sent if the homing failed for other reasons.

2.2.15 LogTrace(s)
This command inserts a comment into the robot's log. It is useful for debugging, allowing you to show
our support team where exactly a certain event occurs.

Arguments
 • s: a text string (the comment).

Responses
[2085][Command successful: '...'.]

2.2.16 LogUserCommands(e1,e2)
This command enables/disables the logging of commands received by the robot, as well as the
responses send by the robot.

Arguments
 • e1: enable (1) or disable (0) logging of received commands and sent responses;
 • e2: enable (1) or disable (0) logging of compilation and execution of motion commands.

Responses
[2085][Command successful: '...'.]

2.2.17 PauseMotion
This command stops the robot movement. It is executed as soon as received (within 5 ms from it
being sent, depending on your network configuration), but the robot stops by decelerating, and not
by engaging the brakes. For example, if a MoveLin command is currently being executed when the
PauseMotion command is received, the robot TCP will stop somewhere along the linear path. If you want
to know where exactly did the robot stop, you can use the GetRtCartPos or GetRtJointPos commands.

The PauseMotion command pauses the robot motion; the rest of the trajectory is not deleted and can
be resumed with the ResumeMotion command. The PauseMotion command is useful if you develop your
own HMI and need to implement a pause button. It can also be useful if you suddenly have a problem
with your tool (e.g., while the robot is applying an adhesive, the reservoir becomes empty).

The PauseMotion command generates the following two responses: the first (2042) is always sent,
whereas the second (3004) is sent only if the robot was moving when it received the PauseMotion
command. If a motion error occurs while the robot is paused (e.g., if another moving body hits the
robot), the motion is cleared and can no longer be resumed.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 33

TCP/IP COMMUNICATION

Responses
[2042][Motion paused.]
[3004][End of movement.]

2.2.18 ResetError
This command resets the robot error status. It can generate one of the following two responses: the first
response (2005) is generated if the robot was indeed in an error mode, while the second one (2006) is
sent if the robot was not in error mode.

Responses
[2005][The error was reset.]
[2006][There was no error to reset.]

2.2.19 ResetPStop
As described in the User Manual of the Meca500, you can connect one software stop (SWStop) to the
robot's power supply. When you apply voltage to the terminals of SWStop, the robot is immediately put
in software stop, and the message [3032][1] is returned. To exit the software stop, you must first remove
the voltage from the SWStop terminals. Then, you must send the command ResetPStop, which resets
the software stop and generates the message [3032][0].

Responses
[3032][e]

where e = 1 if voltage is still applied to the SWStop terminals, and e = 0 otherwise.

N.B. The software stop was previously misleadingly called "P-Stop 2". The ResetPStop command will
therefore change name in the near future.

2.2.20 ResumeMotion
This command resumes the robot movement, if it was previously paused with the command
PauseMotion. The robot end-effector resumes the rest of the trajectory from the pose where it was
brought to a stop (after deceleration), unless an error occurred after the PauseMotion or the robot was
deactivated and then reactivated. It is not possible to pause the motion along a trajectory, have the end-
effector move away, then have it come back, and finally resume the trajectory. Motion commands sent
while the robot is paused will be placed in the queue.

This command must also be sent after the ClearMotion command. However, the robot will not move
until another motion command is received (or retrieved from the motion queue). This command must
also be sent after the ResetError command.

Responses
[2043][Motion resumed.]

2.2.21 SetCtrlPortMonitoring(e)
Although data is sent synchronously over the control and monitoring ports, socket delays can cause
desynchronization at the reception. If perfect synchronization is necessary, you must request a copy of
the monitoring port data send to the control port by using the SetCtrlPortMonitoring command.

34 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Arguments
 • e: enable (1) or disable (0) monitoring data over the control port.

default values
By default, the monitoring on the control port is disabled.

Responses
[2096][Monitoring on control port enabled/disabled]

2.2.22 SetEob(e)
When the robot completes a motion command or a block of motion commands, it can send the "[3012]
[End of block.]" message. This means that there are no more motion commands in the queue and the
robot velocity is zero. This message can be enable/disable using the SetEob command.

Arguments
 • e: enable (1) or disable (0) the end-of-block message.

default values
By default, the end-of-block message is enabled.

Responses
[2054][End of block is enabled.]
[2055][End of block is disabled.]

Mecademic does not recommend using the "End of block" message to detect that a program
finished executing. Use the command SetCheckpoint instead.

2.2.23 SetEom(e)
The robot can also send the "[3004][End of movement.]" message as soon as the robot velocity
becomes zero. This can happen after the commands MoveJoints, MovePose, MoveLin, MoveLinRelTrf,
MoveLinRelWrf, PauseMotion and ClearMotion commands, as well as after the SetCartAcc and
SetJointAcc commands. If blending is enabled (even only partially), then there would be no end-of-
movement message between two consecutive Cartesian-space commands (MoveLin, MoveLinRelTrf,
MoveLinRelWrf) or two consecutive joint-space commands (MoveJoints, MovePose).

Arguments
 • e: enable (1) or disable (0) the end-of-movement message.

default values
By default, the end-of-movement message is disabled.

Responses
[2052][End of movement is enabled.]
[2053][End of movement is disabled.]

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 35

TCP/IP COMMUNICATION

2.2.24 SetExtToolSim(e)
This command enables the emulation of one of Mecademic's EOAT. The emulation mode is also
automatically enabled or disabled with the ActivateSim or DeactivateSim commands. You can emulate
any of Mecademic's EOAT, even if you have another of these three already installed on the robot.

The robot doesn't need to be deactivated to enable/disable simulation of its physical tool. However, to
enable simulation of a tool different from the physical one, you need to deactivate the robot first.

Arguments
 • m: tool model, where 0 stands for no tool, 1 for current external tool type, 10 for the MEGP 25E
gripper, 11 for the MEGP 25LS gripper, and 20 for the MPM500 pneumatic module.

default values
By default, when m = 1 (current tool type) and no tool is connected, the MEGP 25E gripper is emulated.

Responses
[2047][m]

2.2.25 SetJointLimits(n,θn,min,θn,max)
This command redefines the lower and upper limits of a robot joint. It can only be executed while the
robot is deactivated. For these user-defined joint limits to be taken into account, you must execute the
command SetJointLimitsCfg(1). Obviously, the new joint limits must be within the default joint limits
(Section 1.1.5) and all the robot joints position must be within the requested limits. Note that these user-
defined joint limits remain active even after you power down the robot.

Use SetJointLimits(n,0,0) to reset the joint limits of a joint to its factory values.

Arguments
 • n: joint number, an integer ranging from 1 to 6;
 • θn,min: lower joint limit, in degrees;
 • θn,max: upper joint limit, in degrees.

Responses
 [2092][n]

2.2.26 SetJointLimitsCfg(e)
This command enables or disables the user-defined limits set by the SetJointLimits command. It can
only be executed while the robot is deactivated. If the user-defined limits are disabled, the default joint
limits become active. However, user-defined limits remain in memory, and can be re-enabled, even after
a power down.

Example: one of the wrist joints has been inadvertently rotated outside its activated, user-defined
limits, preventing the robot from homing. In this situation, you can enable the recovery mode (see
SetRecoveryMode) which will allow activating the robot even when joints are outside user-defined limits.

Arguments
 • e: enable (1) or disable (0) the user-defined joint limits.

https://www.mecademic.com/en/end-effectors
https://www.mecademic.com/en/end-effectors

36 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2093][User-defined joint limits enabled.]
[2093][User-defined joint limits disabled.]

If some robot joints are inadvertently moved outside the defined limits, the robot will refuse
to activate. Enable the recovery mode (see Section 1.3.2) to allow moving the robot even when
joints are outside the configured limits.

2.2.27 SetMonitoringInterval(t)
This command is used to set the time interval at which real-time feedback from the robot is sent from
the robot over TCP port 10001 (see the description for SetRealTimeMonitoring and Section 2.5.4 for
more details).

Arguments
 • t: desired time interval in seconds, in seconds, ranging from 0.001 to 1.

default values
By default, the monitoring time interval is 0.015 s.

2.2.28 SetNetworkOptions(n1,n2,n3,n4,n5,n6)
This command is used to set persistent parameters affecting the network connection. The command can
only be executed while the robot is deactivated. New parameter values will take effect only after a robot
reboot.

Arguments
 • n1: number of successive keep-alive TCP packets that can be lost before the TCP connection is
closed, where n1 is an integer number ranging from 0 to 43,200;

 • n2, n3, n4, n5, n6: currently not used.

default values
By default, n1 = 3.

2.2.29 SetOfflineProgramLoop(e)
This command is used to define whether the program that is to be saved must later be executed a single
time or an infinite number of times, when pressing the Start/Stop button on the robot's base. It has
effect only on program number 1 and only when starting a program using the Start/Stop button (not
when starting a program using the StartProgram command).

Arguments
 • e: enable (1) or disable (0) the loop execution.

default values
By default, looping is disabled.

Responses
[1022][Robot was not saving the program.]

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 37

TCP/IP COMMUNICATION

This command does not generate an immediate response. It is only when saving a program that a
message indicates whether loop execution was enabled or disabled. However, if the command is sent
while no program is being saved, the above message is returned.

2.2.30 SetRealTimeMonitoring(n1,n2,...)
TCP port 10001 (i.e., the monitoring port) transmits the robot's joint set and TRF pose, as well as other
data (see Section 2.5.4), at the rate specified by the SetMonitoringInterval command.

You can enable the transmission of various other real-time data over the monitoring port, with the
difference that they are preceded by a monotonic timestamp in microseconds (see SetRtc). The
arguments of which are a list of numerical codes or alphabetical names.

You can send this command even if the robot is not activated and get the same responses as with the
GetRt* and GetRtTarget* commands, but on the monitoring port, instead of on the control port, and
every monitoring interval, rather than only when requested.

Arguments
 • n1, n2, ...: a list of number codes or names, as follows

 – 2200 or TargetJointPos, for the response of the GetRtTargetJointPos command;
 – 2201 or TargetCartPos, for the response of the GetRtTargetCartPos command;
 – 2202 or TargetJointVel, for the response of the GetRtTargetJointVel command;
 – 2204 or TargetCartVel, for the response of the GetRtTargetCartVel command;
 – 2210 or JointPos, for the response of the GetRtJointPos command;
 – 2211 or CartPos, for the response of the GetRtCartPos command;
 – 2212 or JointVel, for the response of the GetRtJointVel command;
 – 2213 or JointTorq, for the response of the GetRtJointTorq command;
 – 2214 or CartVel, for the response of the GetRtCartVel command;
 – 2218 or Conf, for the response of the GetRtConf command (sent only when changed);
 – 2219 or ConfTurn, for the response of the GetRtConfTurn command (sent only when changed);
 – 2220 or Accel, for the response of the GetRtAccelerometer command;
 – 2227 or Checkpoint, for every new checkpoint reached, preceded by a timestamp;
 – 2321 or GripperForce, for the response of the GetRtGripperForce command;
 – 2322 or GripperPos, for the response of the GetRtGripperPos command;
 – 2323 or GripperVel, for the response of the GetRtGripperVel command;
 – All, to enable all of the above responses.

default values
After a power up, none of the above messages are enabled.

Responses
[2117][n1, n2, ...]

 – n1, n2, ...: a list of response codes.

38 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

The SetRealTimeMonitoring command does not have a cumulative effect; if you execute the command
SetRealTimeMonitoring(All) and then the command SetRealTimeMonitoring(TargetCartPos) or the
command SetRealTimeMonitoring(2201), you will only enable message 2201.

More details about the monitoring port are presented in Section 2.5.4.

2.2.31 SetRobotName(s)
This command allows you to change the robot's name. The change is persistent and remains even after
power-down. The command is useful when multiple robots are connected on the same network. The
SetRobotName command also changes the hostname of the robot in the case of a DHCP connection. The
robot's name is displayed in the upper right corner of the web interface, as well as in the browser tab
hosting the web interface. You can also retrieve the robot's name with the command GetRobotName.

The command can only be executed while the robot is powered but not activated.

Arguments
 • s: string containing the robot's name. It should contain a maximum of 63 characters, alphanumeric
or hyphens, but should not start with a hyphen.

default values
By default, the robot's name is m500.

Responses
[2085][Command successful: '...'.]

2.2.32 SetRecoveryMode(e)
As discussed in Section 1.3.1, homing the robot when the robot is too close to an obstacle may lead to
a collision. Moving the robot when its joints are outside the user-defined limits is impossible. For these
two situations, it is useful to enable the SetRecoveryMode command.

When the recovery mode is enabled, and the robot is activated, virtually all motion commands are
accepted, but joint and Cartesian velocities and accelerations are significantly limited, for safety reasons.
Similarly, in recovery mode, you can still control the Mecademic grippers or the MPM500 pneumatic
module connected to the robot, but the gripping force and velocity of the grippers are limited, for safety
reasons. Finally, in recovery mode, you can move outside the user-defined joint limits.

If the robot was not homed before enabling the recovery mode, the robot movements will be less
accurate. The same applies for the movements of the Mecademic grippers, if such a gripper was
installed on the robot. In addition, you would not be able to use the MoveGripper command, but can still
use the GripperOpen and GripperClose commands.

If the robot was already homed, when the recovery mode was enabled, the robot and the grippers will
be as accurate as before and you can still use the MoveGripper command.

Arguments
 • e: enable (1) or disable (0) the recovery mode.

default values
By default the recovery mode is deactivated.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 39

TCP/IP COMMUNICATION

Responses
[2049][Recovery mode enabled]
[2050][Recovery mode disabled]

2.2.33 SetRtc(t)
Since our robots do not have batteries, when powered on, their internal clock starts at the date at
which the robot image was built. Each time you connect to the robot via the web interface, the internal
clock of the robot is automatically adjusted to UTC. Other than connecting to the robot using the Web
Portal, another solution is to send the SetRtc command to the robot (from the PLC or any application
controlling the robot), if you want all timestamps in the robot's log files to be with respect to UTC.

Arguments
 • t: Epoch time as defined in Unix (i.e., number of seconds since 00:00:00 UTC January 1, 1970).

2.2.34 SetToolSphere(x,y,z,r)
This command is part of a novel, "Cartesian limits" feature that is still under development. Read the
description of the SetWorkspaceLimitsCfg for more details.

The SetToolSphere command can only be executed while the robot is powered but not activated. It
defines a sphere fixed in the flange reference frame (FRF). Interferences between that sphere and the
robot links as well as the outside of a bounding box set with the SetWorkspaceLimitsCfg command can
then be supervised, as defined by the SetWorkspaceLimitsCfg command.

Arguments
 • x, y, z: the coordinates of the center of the tool sphere in the BRF, in mm;
 • r: the radius of the tool sphere, in mm.

default values
By default, x = y = z = 0 and r = 0.

Responses
 [2168] [Tool sphere set successfully.]

N.B. Interferences between the tool sphere and the robot flange, and the tool sphere and link 6
(the one with the I/O port) are not tested. Obviously, if you set your tool sphere too big, e.g. with
SetToolSphere(0,0,0,60), it will always interfere with link 5, i.e., the yoke one with the "−A5+"
engraving.

2.2.35 SetWorkspaceLimitsCfg(s,m)
This command is part of a novel, "Cartesian limits" feature that is still under development. For example,
collision detection errors are not sufficiently detailed. Use with caution.

In addition to being able to further constrain the limits of the robot joints with the commands
SetJointLimits and SetJointLimitsCfg, you can also apply Cartesian limits with the commands
SetWorkspaceLimits and SetToolSphere. Essentially, the former command defines a bounding box in
the base reference frame (BRF) and the latter a sphere (that will be called the tool sphere) in the flange
reference frame (FRF). The command SetWorkspaceLimitsCfg specifies the "event severity" for the
Cartesian constraint and the exact collision detections to be supervised.

40 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

This command can only be executed while the robot is powered but not activated.

Arguments
 • s: integer defining the collision detection event severity as

 – 0, disabled (i.e., no collision detections are verified);
 – 1, generate a warning every time a collision was detected just after a non-collision state;
 – 3, clear motion;
 – 4, generate a motion error.

 • m: integer defining the collision detection mode as

 – 0, verify self-collisions only (i.e., verification for collisions between two robot links or between
the tool sphere and any of robot links 0 to 5);

 – 1, verify self-collisions AND whether the tool sphere is completely inside the bounding box;
 – 2, verify self-collisions AND whether the tool sphere AS WELL AS all robot links are completely
inside the bounding box.

default values
By default, s = 0 and m = 0.

Responses
[2164] [Workspace configuration limit set successfully.]

Note that when validating mechanical interferences, each robot link is represented by a very accurate
STL model, not some kind of rough approximation. In the near future, it will also be possible to
import a CAD model (STL format) for the tool, as well as several CAD models for obstacles in the base
reference frame. Therefore, it is almost certain that this command, as well as all related commands
(SetWorkspaceLimits, SetToolSphere) will change. In fact, at some point, it would be best to set the
Cartesian limits in the MecaPortal, where you will be able to see the actual 3D models.

2.2.36 SetWorkspaceLimits(xmin,ymin,zmin,xmax,ymax,zmax)
This command is part of a novel, "Cartesian limits" feature that is still under development. Read the
description of the SetWorkspaceLimitsCfg for more details.

The SetWorkspaceLimits command can only be executed while the robot is powered but not activated.
It defines a cuboid, the sides of which are parallel to the axes of the base reference frame (BRF). The
arguments of the command are the coordinates of two diagonally opposite corners, such that each
coordinate of one corner is smaller that the corresponding coordinate of the other corner.

Arguments
 • xmin, ymin, zmin: the coordinates of one of the cuboid corners in the BRF, in mm;
 • xmax, ymax, zmax: the coordinates of the diagonally opposite corner in the BRF, in mm.

default values
By default, xmin = ymin = zmin = –10 000 and xmax = ymax = zmax = 10 000.

Responses
 [2166] [Workspace limits set successfully.]

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 41

TCP/IP COMMUNICATION

2.2.37 StartProgram(s)
This command starts a program that has been previously saved in the robot's memory. The robot must
be activated and homed before running a program. Executing this command will launch the program s
only once.

Alternately, pressing the Start/Stop button on the robot base will start program named "1", if such a
program exists, and execute it the number of times defined by the SetOfflineProgramLoop command.

Arguments
 • s: string containing the program name. It should contain a maximum of 63 characters among the
62 alphanumericals (A..Z, a..z, 0..9), the underscore and the hyphen.

Responses
[2063][Offline program s started.]
[3017][No offline program saved.]

The new robot web interface allows saving of programs using sting-based name rather than
numbers, unlike the command StartSaving. However, if you wish to start these programs
through a cyclic protocol, you should only use integer numbers as program names.

2.2.38 StartSaving(n)
This command is used to save commands in the robot's internal memory. These are referred to as
offline programs that can later be played using the StartProgram command or by pressing the Start/
Pause button on the robot's base.

The saved program will remain in the robot internal memory even after disconnecting the power. Saving
a new program with the same argument overwrites the existing program.

The robot records all commands sent between the StartSaving and StopSaving commands.

The robot will execute but not record Get* commands (GetBlending, GetRtCartPos, etc.). If the
robot receives a change of state command (BrakesOn, Home, PauseMotion, SetEom, etc.) while
recording, it will abort saving the program. Finally, only program 1 can be executed using the
Start/Pause button on the robot base.

Arguments
 • n: program number, where n ≤ 500 (maximum number of programs that can be stored).

Responses
[2060][Start saving program.]

2.2.39 StopSaving
This command will make the controller save the program and stop saving. Two responses will be
generated: the first (2061) and the second (2064) or third (2065) of the three responses given below.
If you send this command while the robot is not saving a program, the fourth response (1022) will be
returned.

42 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2061][n commands saved.]
[2064][Offline program looping is enabled.]
[2065][Offline program looping is disabled.]
[1022][Robot was not saving the program.]

2.2.40 SyncCmdQueue(n)
This command is used for associating an ID number with any non-motion command, thus providing
means to identify the command that sent a specific response. It it is executed immediately.

Arguments
 • n : a non-negative integer number, ranging from 0 to 4,294,967,295.

Responses
[2097][n]

For example, sending SyncCmdQueue(123) just before the GetStatusRobot command allows the
application to know if a received robot status (code 2007) is the response of the GetStatusRobot
request (i.e., preceded by [2097][123]) or of an older status request.

2.2.41 SwitchToEtherCat
This command will disable the TCP/IP, EtherNet/IP and PROFINET protocols and enable EtherCAT instead
(EtherCAT is an exclusive protocol that cannot be used at the same time as other Ethernet-based
protocols, see Section 4).

Enabling EtherCAT will disable all other communication protocols (TCP/IP, EtherNet/IP,
PROFINET).The web portal is NOT accessible while in EtherCAT mode.

There are two ways to disable EtherCAT (and thus re-enable another communication protocols):

1. Use the appropriate EtherCAT command (Section 4.1.3).
2. Perform a network configuration reset (press and hold the power button on the robot base while

the robot is rebooting (may require up to 60 seconds).

2.2.42 Tcpdump(n)
This command starts an Ethernet capture (pcap format) on the robot, for the specified duration. The
Ethernet capture will be part of the logs archive, which can be retrieved from the MecaPortal.

Arguments
 • n: duration in seconds.

Responses
[3035][TCP dump capture started for n seconds.]
[3036][TCP dump capture stopped.]

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 43

TCP/IP COMMUNICATION

2.2.43 TcpdumpStop
This command is needed if you want to stop the TCP dump started with the TcpDump(n) commands,
before the timeout period of n seconds.

Responses
[3036][TCP dump capture stopped.]

2.3. data request commands
The request (Get*) commands in this section generally return (on TCP port 10000) values for parameters
that have already been configured (sent and executed) with a Set* command (or the default values).

Motion commands sent to the robot are executed one after the other, while Get* commands are
executed immediately. Therefore, if you send a SetTrf command, then a MovePose command, then
another SetTrf command, and immediately after that a GetTrf command, you will get the arguments of
the first SetTrf command.

In the following subsections, request commands are presented in alphabetical order. For every Get*
command in this section, there is a corresponding Set* command.

2.3.1 GetAutoConf
This command returns the state of the automatic posture configuration selection, which can be affected
by SetAutoConf and SetConf commands.

Responses
[2028][e]

 – e: enabled (1) or disabled (0).

2.3.2 GetAutoConfTurn
This command returns the state of the automatic turn configuration selection, which can be affected by
SetAutoConfTurn and SetConfTurn commands.

Responses
[2031][e]

 – e enabled (1) or disabled (0).

2.3.3 GetBlending
This command returns the blending percentage, set with the SetBlending command.

Responses
[2150][p]

 – p: percentage of blending, ranging from 0 (blending disabled) to 100.

44 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.3.4 GetCartAcc
This command returns the desired limit of the acceleration of the TRF with respect to the WRF, set by
the command SetCartAcc.

Responses
[2156][p]

 – p: percentage of maximum acceleration of the TRF.

2.3.5 GetCartAngVel
This command returns the desired limit of the angular velocity of the TRF with respect to the WRF, set by
the command SetCartAngVel.

Responses
[2155][ω]

 – ω: TRF angular velocity limits, in °/s.

2.3.6 GetCartLinVel
This command returns the desired TCP velocity limit, set by SetCartLinVel.

Responses
[2154][v]

 – v: TCP velocity limit, in mm/s.

2.3.7 GetCheckpoint
This command returns the argument of the last executed SetCheckpoint.

Responses
[2157][n]

 – n: checkpoint number.

2.3.8 GetConf
This command returns the desired posture configuration (see Figure 5), or more precisely, the posture
configuration that will be applied to the next MovePose or MoveLin* command in the motion queue. This
is either the posture configuration explicitly specified with the SetConf command, or the one that was
automatically assigned when the SetAutoConf(0) command was executed.

Responses
[2029][cs, ce, cw]

 – cs: shoulder configuration parameter, either −1 or 1†;
 – ce: elbow configuration parameter, either −1 or 1†;
 – cw: wrist configuration parameter, either −1 or 1†.

† if automatic posture configuration selection is enabled, the value of each parameter is an asterisk,
i.e., the response is [2029][*,*,*].

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 45

TCP/IP COMMUNICATION

2.3.9 GetConfTurn
This command returns the desired turn configuration (see Figure 5), i.e., the turn configuration that will
be applied to the next MovePose or MoveLin* command in the motion queue. Recall that this is either
the turn configuration that you have explicitly specified with the command SetConfTurn, or the one that
was automatically assigned when the command SetAutoConfTurn(0) was executed.

Responses
[2036][ct]

 – ct: turn configuration parameter, an integer from −100 to 100, or an asterisk†.

† if automatic turn configuration selection is enabled, the value returned is *.

2.3.10 GetGripperforce
This command returns the percentage of maximum grip force for the Mecademic grippers. This
percentage is set by the SetGripperForce command.

Responses
[2158][p]

 – p: percentage of maximum grip force.

2.3.11 GetGripperRange
This command returns the allowable range for the fingers opening of the Mecademic grippers as
detected during homing or defined with the GetGripperRange command.

Responses
[2162][dclosed, dopen]

 – dclosed: fingers opening that should correspond to closed state, in mm;
 – dopen: fingers opening that should correspond to open state, in mm.

2.3.12 GetGripperVel
This command returns the percentage of maximum finger velocity for the Mecademic grippers. This
percentage is set by the SetGripperVel command.

Responses
[2159][p]

 – p: percentage of maximum velocity of the gripper fingers.

2.3.13 GetJointAcc
This command returns the desired joint accelerations reduction factor, set by the SetJointAcc
command.

Responses
[2153][p]

 – p: percentage of maximum joint accelerations.

46 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.3.14 GetJointLimits(n)
This command returns the current effective joint limits, i.e., the default joint limits or the user-defined
limits if applied (SetJointLimits) and enabled (SetJointLimitsCfg).

Arguments
 • n: joint number, an integer ranging from 1 to 6.

Responses
[2090][n, θn,min, θn,max]

 – n: joint number, an integer ranging from 1 to 6;
 – θn,min: lower joint limit, in degrees;
 – θn,max: upper joint limit, in degrees.

2.3.15 GetJointLimitsCfg
This command returns the status of the user-enabled joint limits, defined by SetJointLimitsCfg.

Responses
 [2094][e]

 – e: status, 1 for enabled, 0 for disabled.

2.3.16 GetJointVel
This command returns the desired joint velocities reduction factor, set with the SetJointVel command.

Responses
[2152][p]

 – p: percentage of maximum joint velocities.

2.3.17 GetJointVelLimit
This command returns the desired joint velocities override, set with the SetJointVelLimit command.

Responses
[2169][p]

 – p: percentage of maximum joint velocities override.

2.3.18 GetMonitoringInterval
This command returns the time interval at which real-time feedback from the robot is sent from the
robot over TCP port 10001.

Responses
[2116][t]

 – t: time interval, in seconds.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 47

TCP/IP COMMUNICATION

2.3.19 GetNetworkOptions
This command returns the parameters affecting the network connection.

Responses
[2119][n1, n2, n3, n4, n5, n6]

 – n1: number of successive keep-alive TCP packets that can be lost before the TCP connection is
closed, where n1 is an integer number ranging from 0 to 43,200

 – n2, n3, n4, n5, n6: currently not used.

2.3.20 GetRealTimeMonitoring
This command returns the numerical codes of the responses that have been enabled with the
SetRealTimeMonitoring command.

Responses
[2117][n1, n2, ...]

2.3.21 GetToolSphere
This command returns the current definition of the tool sphere, set with the SetToolSphere command.

Responses
[2167][x, y, z, r]

 – x, y, z: the coordinates of the center of the tool sphere with respect to the FRF, in mm;
 – r: the radius of the tool sphere, in mm.

2.3.22 GetTorqueLimits
This command returns the desired joint torque thresholds, set with the SetTorqueLimits command.

Responses
[2161][p1, p2, p3, p4, p5, p6]

 – pi: percentage of the maximum allowable torque that can be applied at joint i (i = 1, 2, ..., 6).

2.3.23 GetTorqueLimitsCfg
This command returns the desired behavior of the robot, when a joint torques exceeds the thresholds
set by the SetTorqueLimits. This desired behavior is set with the SetTorqueLimitsCfg command.

Responses
[2160][s, m]

 – s: an integer defining the torque limit event severity (see SetJointLimitsCfg);
 – m: an integer defining the detection mode (see SetTorqueLimitsCfg).

2.3.24 GetTrf
This command returns the current definition of the TRF with respect to the FRF, set with the SetTrf
command.

48 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2014][x, y, z, α, β, γ]

 – x, y, z: the coordinates of the origin of the TRF with respect to the FRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the TRF with respect to the FRF, in
degrees.

2.3.25 GetVelTimeout
This command returns the timeout for velocity-mode motion commands, set with the SetVelTimeout
command.

Responses
[2151][t]

 – t: timeout, in seconds.

2.3.26 GetWorkspaceLimits
This command returns the current definition of the bounding box with respect to the BRF, set with the
SetWorkspaceLimits command.

Responses
[2165][xmin, ymin, zmin,xmax, ymax, zmax]

 – xmin, ymin, zmin: the coordinates of one of the cuboid corners in the BRF, in mm;
 – xmax, ymax, zmax: the coordinates of the diagonally opposite corner, in mm.

2.3.27 GetWorkspaceLimitsCfg
This command returns the current workspace limits configuration, set with the SetWorkspaceLimitsCfg
command.

Responses
[2163][s,m]

 – s: event severity;
 – m: supervision mode.

2.3.28 GetWrf
This command returns the current definition of the WRF with respect to the BRF, set with the SetWrf
command.

Responses
[2013][x, y, z, α, β, γ]

 – x, y, z: the coordinates of the origin of the WRF with respect to the BRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the WRF with respect to the BRF, in
degrees.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 49

TCP/IP COMMUNICATION

2.4. Real-time data request commands
The request commands in this section return real-time data pertaining to the current status of the robot.
One such data point is the current joint set, but there is a command that also returns the current length
of the motion queue, and another that returns the current status of the torque limits, for example.

There are two types of robot positioning real-time data commands. The first type returns data according
to real-time measurements from the robot sensors:

 • GetRtJointTorq: returns the current joint torques, as measured by the motor currents.
 • GetRtAccelerometer: returns the current acceleration in link 5.
 • GetRtJointPos: returns the current joint set, as measured by the joint encoders.
 • GetRtCartPos: returns the current TRF pose as calculated from the real-time joint encoder values.
 • GetRtJointVel: returns the current joint velocities as calculated from the real-time joint encoder
values.

 • GetRtCartVel: returns the current Cartesian velocity as calculated from the real-time joint encoder
values.

 • GetRtConf: returns the current posture configuration as calculated from the real-time joint encoder
values.

 • GetRtConfTurn: returns the current turn configuration as calculated from the real-time joint encod-
er values.

The second type returns real-time targets calculated by the trajectory planner:

 • GetRtTargetJointPos: returns the current target joint pose as calculated by the trajectory planner.
 • GetRtTargetCartPos: returns the current target TRF pose as calculated by the trajectory planner.
 • GetRtTargetJointVel: returns the current target joint velocities as calculated by the trajectory
planner.

 • GetRtTargetCartVel: returns the current target Cartesian velocity as calculated by the trajectory
planner.

 • GetRtTargetConf: returns the current target posture configuration as calculated by the trajectory
planner.

 • GetRtTargetConfTurn: returns the current target turn as calculated by the trajectory planner.

For example, if the robot is active and homed, but not moving, the GetRtTargetJointPos command will
always return the same joint set, as long as the robot remains stationary. In reality, the robot is never
perfectly still since the drives are constantly controlling the motors. Indeed, the joints oscillate ±0.001°
around the desired joint angles. Thus, if you execute the command GetRtJointPos twice in a row while
the robot is "not moving", you will see that the joint values may differ by a couple of micro-degrees.

In a more extreme situation, if a high force is applied to the robot, you will see larger differences
between the real joint set (GetRtJointPos) and the desired one (GetRtTargetJointPos). The differences
become even larger during rapid motions at high payloads and at a collision.

Each of the GetRt* command responses starts with a timestamp, measured in micro-seconds. The
GetRtTargetCartPos and GetRtTargetJointPos return the same data as the deprecated commands
GetPose and GetJoints respectively, except for the timestamp.

All of the commands in this section return responses on TCP port 10000.

50 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

2.4.1 GetCmdPendingCount
This command returns the number of motion commands that are currently in the motion queue.

Responses
[2080][n]

Note that the robot will compile several (~25) commands in advance. These compiled commands are not
included in this count though they may not yet have started executing.

2.4.2 GetJoints
This deprecated command returns the current target joint set. Use GetRtTargetJointPos instead.

Responses
[2026][θ1, θ2, θ3, θ4, θ5, θ6]

 – θi: the angle of joint i, in degrees (i = 1, 2, ..., 6).

2.4.3 GetPose
This deprecated command returns the current target pose of the robot TRF with respect to the WRF. Use
GetRtTargetCartPos instead.

Responses
[2027][x, y, z, α, β, γ]

 – x, y, z: the coordinates of the origin of the TRF with respect to the WRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the TRF with respect to the WRF, in
degrees.

2.4.4 GetRtAccelerometer(n)
An accelerometer is embedded in link 5 of the Meca500 (i.e., the body with the I/O port), just before
joint 6. It reports the acceleration of link 5 with respect to the WRF in the range ±32,000, which
corresponds to ±2g. If the robot is not moving and is installed upright on a stationary horizontal surface,
GetRtAccelerometer(5) will return roughly {0,0,−16000}, no matter what the joint set. In other words, in
stationary conditions, you can essentially think as if the accelerometer is embedded in the base of the
robot.

Arguments
 • n: link number, currently must be 5.

Responses
[2220][t, n, ax, ay, az]

 – t: timestamp in microseconds;
 – n: link number, currently 5;
 – ax, ay, az: acceleration in link 5, measured with respect to the WRF, and in units such that 16,000
is equivalent to 9.81 m/s2 (i.e., 1g).

Data from this accelerometer should not be used for precise measurements.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 51

TCP/IP COMMUNICATION

2.4.5 GetRtc
This command returns the current Epoch Time in seconds, set with SetRtc, after every reboot of the
robot. Note that this is different from the timestamp returned by all GetRt* commands, which is in
microseconds. Furthermore, these two time measurements have different zero references.

Responses
[2140][t]

 – t: Epoch time as defined in Unix (i.e., number of seconds since 00:00:00 UTC January 1, 1970).

2.4.6 GetRtCartPos
This command returns the pose of the TRF with respect to the WRF, as calculated from the current joint
set read by the joint encoders. In also returns a timestamp.

Responses
[2211][t, x, y, z, α, β, γ]

 – t: timestamp in microseconds;
 – x, y, z: the coordinates of the origin of the TRF with respect to the WRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the TRF with respect to the WRF, in
degrees.

2.4.7 GetRtCartVel
This command returns the current Cartesian velocity vector of the TRF with respect to the WRF, as
calculated from the real-time data coming from the joint encoders.

Responses
[2214][t, ẋ, ẏ, ż, ωx, ωy, ωz]

 – t: timestamp in microseconds;
 – ẋ, ẏ, ż: components of the linear velocity vector of the TCP with respect to the WRF, in mm/s.
 – ωx, ωy, ωz: components of the angular velocity vector of the TRF with respect to the WRF, in °/s.

The current TCP speed with respect to the WRF is therefore (ẋ2 + ẏ2 + ż2)½, and the current angular speed
of the end-effector with respect to the WRF is (ωx2 + ωy2 + ωz2)½. Note that the components of the angular
velocity vector are not the time derivatives of the Euler angles.

2.4.8 GetRtConf
Contrary to the command GetConf which returns the desired posture configuration parameters, the
GetRtConf returns the current posture configuration parameters, as calculated from the real-time data
coming from the joint encoders. In addition, the GetRtConf command returns a timestamp.

Responses
[2218][t, cs, ce, cw]

 – t: timestamp in microseconds;
 – cs: shoulder configuration parameter, either −1 or 1†;

52 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

 – ce: elbow configuration parameter, either −1 or 1†;
 – cw: wrist configuration parameter, either −1 or 1†.

† at the corresponding singularity, we return 0, but display the text "n/a" in the web interface.

2.4.9 GetRtConfTurn
Contrary to the command GetConfTurn which returns the desired turn configuration parameter, the
GetRtConfTurn returns the current turn configuration parameter, as calculated from the real-time data
coming from the joint encoder of joint 6. In addition, the GetRtConfTurn command returns a timestamp.

Response
[2219][t, ct]

 – t: timestamp in microseconds;
 – ct: turn configuration parameter, an integer between −100 and 100.

2.4.10 GetRtExtToolStatus
This command returns the general status of the external tool connected to the I/O port of the Meca500,
preceded with a timestamp. For additional status information, use the commands GetRtGripperState
or GetRtValveState.

Responses
[2300][t, simType, phyType, hs, es, oh]

 – t: timestamp in microseconds;
 – simType: simulated external tool type (0 for none, 10 for MEGP 25E gripper, 11 for MEGP 25LS
gripper, 20 for MPM500 pneumatic module);

 – phyType: physical external tool type mounted on the robot (0 for none, 10 for MEGP 25E gripper,
11 for MEGP 25LS gripper, 20 for MPM500 pneumatic module);

 – hs: homing state (0 for homing not performed, 1 for homing performed);
 – es: error state (0 for absence of error, 1 for presence of error);
 – oh: overheat (0 if there is no overheat, 1 if the gripper is in overheat).

2.4.11 GetRtGripperforce
This command returns the currently applied grip force of the Mecademic gripper, preceded by a
timestamp.

Responses
[2321][t, p]

 – t: timestamp in microseconds;
 – p: currently applied grip force, as signed percentage of the maximum grip force (~40 N).

A positive grip force means the jaws are forcing outwards, while a negative grip force means the jaws
are forcing towards each other.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 53

TCP/IP COMMUNICATION

2.4.12 GetRtGripperPos
This command returns the current fingers opening of Mecademic grippers (see MoveGripper), preceded
with a timestamp.

Responses
[2322][t, p]

 – t: timestamp in microseconds;
 – d: fingers opening.

You can use this command to perform rough measurements on a part. However, you would need
to use short, rigid, precisely machined, and properly installed fingers. These fingers will also have to
be designed in such a way that the part is automatically aligned. For example, you can measure the
diameter of a cylindrical vial, once you lift the vial. Even in such perfect conditions, you can still obtain
measurement errors of as much as 0.5 mm.

2.4.13 GetRtGripperState
This command returns the current state of the Mecademic grippers connected to the I/O port of the
Meca500, preceded with a timestamp.

Responses
[2320][t, hp, dr, gc, go]

 – t: timestamp in microseconds;
 – hp: holding part (0 if the gripper is not forcing, 1 otherwise).
 – dr: desired fingers opening reached (1 if a MoveGripper, GripperClose or GripperOpen
command was executed and the desired fingers opening was reached, 0 otherwise);

 – gc: gripper closed (1 if the current fingers opening is equal to or smaller than the fingers
opening detected during homing or defined with the SetGripperRange command as the one
corresponding to the closed position, 0 otherwise);

 – go: gripper open (1 if the current fingers opening is equal to or greater than the fingers
opening detected during homing or defined with the SetGripperRange command as the one
corresponding to the open position, 0 otherwise).

2.4.14 GetRtGripperVel
This command returns the current finger velocity, as percentage of the maximum finger velocity for the
MEGP 25* grippers.

Responses
[2323][t, p]

 – t: timestamp in microseconds;
 – p: current finger velocity, as signed percentage of maximum velocity of the gripper fingers.

2.4.15 GetRtJointPos
This command returns the current joint set read by the joint encoders. It also returns a timestamp.

54 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses
[2210][t, θ1, θ2, θ3, θ4, θ5, θ6]

 – t: timestamp in microseconds;
 – θi: the angle of joint i, in degrees (i = 1, 2, ..., 6).

2.4.16 GetRtJointTorq
This command returns the current joint torques.

Responses
[2213][t, τ1, τ2, τ3, τ4, τ5, τ6]

 – t: timestamp in microseconds;
 – τi: the torque of joint i as a signed percentage of the maximum allowable torque (i = 1, 2, ..., 6).

2.4.17 GetRtJointVel
This command returns the current joint velocities, as calculated by differentiating the data coming from
the joint encoders.

Responses
[2212][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]

 – t: timestamp in microseconds;
 – θ̇i: the rate of change of joint i, in °/s (i = 1, 2, ..., 6).

2.4.18 GetRtTargetCartPos
This command returns the current target pose of the TRF with respect to the WRF, rather than the pose
as calculated from real-time data from the joint encoders. It returns the same data as the legacy GetPose
command, except for the additional timestamp.

Responses
[2201][t, x, y, z, α, β, γ]

 – t: timestamp in microseconds;
 – x, y, z: the coordinates of the origin of the TRF with respect to the WRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the TRF with respect to the WRF, in
degrees.

2.4.19 GetRtTargetCartVel
This command returns the current target Cartesian velocity vector of the TRF with respect to the WRF.

Responses
[2204][t, ẋ, ẏ, ż, ωx, ωy, ωz]

 – t: timestamp in microseconds;
 – ẋ, ẏ, ż: components of the linear velocity vector of the TCP with respect to the WRF, in mm/s.
 – ωx, ωy, ωz: components of the angular velocity vector of the TRF with respect to the WRF, in °/s.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 55

TCP/IP COMMUNICATION

2.4.20 GetRtTargetConf
This command returns the posture configuration parameters calculated from the current target joint set.

Responses
[2208][t, cs, ce, cw]

 – t: timestamp in microseconds;
 – cs: shoulder configuration parameter, either −1 or 1†;
 – ce: elbow configuration parameter, either −1 or 1†;
 – cw: wrist configuration parameter, either −1 or 1†.

† at the corresponding singularity, we return 0, but display the text "n/a" in the web interface.

2.4.21 GetRtTargetConfTurn
This command returns the turn configuration parameters calculated from the current target joint value
for joint 6.

Responses
[2209][t, ct]

 – t: timestamp in microseconds;
 – ct: turn configuration parameter, an integer between −100 and 100.

2.4.22 GetRtTargetJointPos
This command returns the current target joint set. It returns the same data as the legacy GetJoints
commands, except for the additional timestamp.

Responses
[2200][t, θ1, θ2, θ3, θ4, θ5, θ6]

 – t: timestamp in microseconds;
 – θi: the angle of joint i, in degrees (i = 1, 2, ..., 6).

2.4.23 GetRtTargetJointTorq
This command returns the current target joint torques.

Responses
[2203][t, τ1, τ2, τ3, τ4, τ5, τ6]

 – t: timestamp in microseconds;
 – τi: the torque of joint i as a signed percentage of the maximum allowable torque (i = 1, 2, ..., 6).

2.4.24 GetRtTargetJointVel
This command returns the current target joint velocities.

56 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Responses

[2202][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]

 – t: timestamp in microseconds;
 – θ̇i: the rate of change of joint i, in °/s (i = 1, 2, ..., 6).

2.4.25 GetRtTrf
This command returns the current definition of the TRF with respect to the FRF, set by the SetTrf
command. It returns exactly the same pose as the GetTrf command, but the response code is different
and a timestamp precedes the pose data.

Responses
[2229][t, x, y, z, α, β, γ]

 – t: timestamp in microseconds;
 – x, y, z: the coordinates of the origin of the TRF with respect to the FRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the TRF with respect to the FRF, in
degrees.

2.4.26 GetRtValveState
This command returns the current state of the MPM500 pneumatic module connected to the I/O port of
the Meca500, preceded with a timestamp.

Responses
[2310][t, v1, v1]

 – t: timestamp in microseconds;
 – v2: state of valve 1 (0 if closed, 1 if open);
 – v1: state of valve 2 (0 if closed, 1 if open).

2.4.27 GetRtWrf
This command returns the current definition of the WRF with respect to the BRF, set by the SetWrf
command. It returns exactly the same pose as the GetWrf command, but the response code is different
and a timestamp precedes the pose data.

Responses
[2228][t, x, y, z, α, β, γ]

 – t: timestamp in microseconds;
 – x, y, z: the coordinates of the origin of the WRF with respect to the BRF, in mm;
 – α, β, γ: the Euler angles representing the orientation of the WRF with respect to the BRF, in
degrees.

2.4.28 GetStatusGripper
This deprecated command returns the gripper's status, but it is deprecated as of firmware 9.0. Use
GetRtExtToolStatus or GetRtGripperState instead.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 57

TCP/IP COMMUNICATION

Responses
[2079][ge, hs, hp, lr, es, oh]

 – ge: gripper enabled, i.e., present (0 for disabled, 1 for enabled);
 – hs: homing state (0 for homing not performed, 1 for homing performed);
 – hp: holding part (0 if the gripper does not hold a part, 1 otherwise);
 – lr: limit reached (0 if the fingers are not fully open or closed, 1 otherwise);
 – es: error state (0 for absence of error, 1 for presence of error);
 – oh: overheat (0 if there is no overheat, 1 if the gripper is in overheat).

2.4.29 GetStatusRobot
This command returns the status of the robot.

Responses
[2007][as, hs, sm, es, pm, eob, eom]

 – as: activation state (1 if robot is activated, 0 otherwise);
 – hs: homing state (1 if homing already performed, 0 otherwise);
 – sm: simulation mode (1 if simulation mode is enabled, 0 otherwise);
 – es: error status (1 for robot in error mode, 0 otherwise);
 – pm: pause motion status (1 if robot is in pause motion, 0 otherwise);
 – eob: end of block status (1 if robot is not moving and motion queue is empty, 0 otherwise);
 – eom: end of movement status (1 if robot is not moving, 0 if robot is moving).

Note that pm = 1 if a PauseMotion or a ClearMotion was sent, or if the robot is in error mode.

2.4.30 GetTorqueLimitsStatus
This command returns the status of the torque limits (whether a torque limit is currently exceeded).

Responses
[3028][s]

 – s: status (0 if no detection, 1 if a torque limit was exceeded).

2.5. Responses and messages
The Meca500 sends responses and messages over its control port when it encounters an error, when it
receives a request command or certain motion commands, and when its status changes. All responses
from the Meca500 consist of an ASCII string in the following format:

[4-digit code][text message OR comma-separated return values]

The four-digit code indicates the type of response:

[1000] to [1999]: Error message due to a command;
[2000] to [2999]: Response to a command, or pose and joint set feedback;
[3000] to [3999]: Status update message or general error.

58 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

The second part of a command error message [1xxx] or a status update message [3xxx] will always be
a description text. The second part of a command response [2xxx] may be a description text or a set of
comma-separated return values, depending on the command.

All text descriptions are intended to communicate information to the user and are subject to change
without notice. For example, the description "Homing failed" may eventually be replaced by “Homing has
failed.” Therefore, you must rely only on the four-digit code of such messages. Any change in the codes
or in the format of the comma-separated return values will always be documented in the firmware
upgrade manual. Finally, return values are either integers or IEEE-754 floating-point numbers with up to
nine decimal places.

2.5.1 Command error messages
When the Meca500 encounters an error while executing a command, it goes into error mode. See
Section 2.6.1 for details on how to manage these errors. Table 1 lists all command error messages.

Table 1: Command error messages

COMMAND ERROR MESSAGES

Message Explanation

[1000][Command buffer is full.] Maximum number of queued commands reached. Retry by
sending commands at a slower rate.

[1001][Empty command or command
unrecognized. - Command: '...']

Unknown or empty command.

[1002][Syntax error, symbol missing. -
Command: '...']

A parenthesis or a comma has been omitted.

[1003][Argument error. - Command: '...'] Wrong number of arguments or invalid input (e.g., the
argument is out of range).

[1005][The robot is not activated.] The robot must be activated.

[1006][The robot is not homed.] The robot must be homed.

[1007][Joint over limit (... is not in range [...,...]
for joint ...). - Command: '...'.]

The robot cannot execute the MoveJoints or MoveJointsRel
command because at least one of its joints is either already or
will become outside the user-defined limits.

[1010][Linear move is blocked because a
joint would rotate by more than 180deg. -
Command: '...']

The linear motion cannot be executed because it requires a
reorientation of 180° of the end-effector, and there may be
two possible paths.

[1011][The robot is in error.] A command has been sent but the robot is in error mode and
cannot process it until a ResetError command is sent.

[1012][Linear move is blocked because it
requires a reorientation of 180 degrees of the
end- effector - Command: '...'.]

The MoveLin or MoveLinRel* command sent requires that the
robot pass through a singularity that cannot be crossed or
pass too close to a singularity with excessive joint rotations.

[1013][Activation failed.] Activation failed (for example, because the SWStop is active).

[1014][Homing failed.] Homing procedure failed. Try again.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 59

TCP/IP COMMUNICATION

Table 1: Command error messages (continued)

COMMAND ERROR MESSAGES

Message Explanation

[1016][Destination pose out of reach for any
configuration. - Command: '...']
[1016][Destination pose out of reach for
selected conf(...,...,... turn ...). - Command: '...']
[1016][The requested linear move is not
possible due to a pose out of reach along the
path. - Command: '...']

The pose requested in the MoveLin, MoveLinRel* or MovePose
command is out of reach, with the desired (or with any)
configurations. In the case of the MoveLin command, this error
code is also produced if a pose along the path is out of reach.

[1022][Robot was not saving the program.] The StopSaving command was sent, but the robot was not
saving a program.

[1023][Ignoring command for offline mode. -
Command: '...']

The command cannot be executed in the offline program.

[1024][Mastering needed. - Command: '...'] Somehow, mastering was lost. Contact Mecademic.

[1025][Impossible to reset the error. Please,
power-cycle the robot.]

Turn off the robot, then turn it back on in order to reset the
error.

[1026][Deactivation needed to execute the
command. - Command: '...']

The robot must be deactivated in order to execute this
command.

[1027][Simulation mode can only be enabled/
disabled while the robot is deactivated.]

The robot must be deactivated in order to execute this
command.

[1029][Offline program full. Maximum program
size is 13,000 commands. Saving stopped.]

Memory full.

[1030][Already saving.] The robot is already saving a program. Wait until finished to
save another program.

[1031][Program saving aborted after receiving
illegal command. - Command: '...']

The command cannot be executed because the robot is
currently saving a program.

[1032][Homing failed because joints are outside
limits.]
DEPRECATED, USED ONLY FOR RELEASE 8

Homing cannot be done, because the current joint set is
outside the user-defined joint limits.

[1033][Start conf mismatch] Requested move blocked because start robot position is not in
the requested configuration.

[1038][No gripper connected.] No gripper was detected.

[1040][Command failed.] General error for various commands.

[1041][No Vbox] No pneumatic module connected.

[1042[Ext tool sim must deactivated] Switching external tool type is only possible when the robot is
deactivated.

2.5.2 Command responses
Motion commands do not generate any (non-error) response, other than the optional EOB and EOM
messages (see Section 2.1 for details) and the message eventually generated by the SetCheckpoint
command. Table 3 presents a summary of all request commands and the possible non-error responses
for each of them.

60 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Table 2: Request commands and corresponding possible responses

COMMAND RESPONSES

Response code Command

[2000][Motors activated.] ActivateRobot

[2002][Homing done.] Home

[2004][Motors deactivated.] DeactivateRobot
[2005][The error was reset.]
[2006][There was no error to reset.]

ResetError

[2007][as, hs, sm, es, pm, eob, eom] GetStatusRobot

[2008][All brakes released.] BrakesOff

[2010][All brakes set.] BrakesOn

[2013][x, y, z, α, β, γ] GetWrf

[2014][x, y, z, α, β, γ] GetTrf

[2026][θ1, θ2, θ3, θ4, θ5, θ6] GetJoints

[2027][x, y, z, α, β, γ] GetPose

[2028][e] GetAutoConf

[2029][cs, ce, cw] GetConf

[2031][e] GetAutoConfTurn

[2036][ct] GetConfTurn

[2042][Motion paused.] PauseMotion

[2043][Motion resumed.] ResumeMotion

[2044][The motion was cleared.] ClearMotion

[2045][The simulation mode is enabled.] ActivateSim

[2046][The simulation mode is disabled.] DeactivateSim

[2047][External tool simulation mode has changed.] SetExtToolSim
[2051][Requested velocity/acceleration is higher than recovery mode's
limits. Requested value will be applied automatically once the recovery
mode is disabled.]

MoveJointsVel, MoveLinVelTrf,
MoveLinVelWrf, SetCartAcc,
SetCartAngVel, SetCartAcc,
SetJointAcc, SetJointVel

[2052][End of movement is enabled.]
[2053][End of movement is disabled.]

SetEom

[2054][End of block is enabled.]
[2055][End of block is disabled.]

SetEob

[2060][Start saving program.] StartSaving

[2061][n commands saved.] StopSaving
[2063][Offline program n started.]
[3004][End of movement.]

StartProgram

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 61

TCP/IP COMMUNICATION

Table 2: Request commands and corresponding possible responses (continued)

COMMAND RESPONSES

Response code Command

[2064][Offline program looping is enabled.]
[2065][Offline program looping is disabled.]

StopSaving

[2079][ge, hs, hp, lr, es, oh] GetStatusGripper

[2080][n] GetCmdPendingCount

[2081][vx.x.x] GetFwVersion

[2088][vx.x.x] GetExtToolFwVersion

[2083][robot's serial number] GetRobotSerial

[2084][Meca500] GetProductType

[2090][n, θn,min, θn,max] GetJointLimits

[2092][n] SetJointLimits
[2093][User-defined joint limits enabled.]
[2093][User-defined joint limits disabled.]

SetJointLimitsCfg

[2094][e] GetJointLimitsCfg

[2095][s] GetRobotName

[2096][Monitoring on control port enabled/disabled] SetCtrlPortMonitoring

[2097][n] SyncCmdQueue

[2116][t] GetMonitoringInterval
[2117][n1, n2, ...] GetRealTimeMonitoring,

SetRealTimeMonitoring

[2119][n1, n2, n3, n4, n5, n6] GetNetworkOptions

[2140][t] GetRtc

[2150][p] GetBlending

[2151][t] GetVelTimeout

[2152][p] GetJointVel

[2153][p] GetJointAcc

[2154][v] GetCartLinVel

[2155][ω] GetCartAngVel

[2156][n] GetCartAcc

[2157][n] GetCheckpoint

[2159][p] GetGripperVel

[2160][s, m] GetTorqueLimitsCfg

[2161][p1, p2, p3, p4, p5, p6] GetTorqueLimits

[2162][dclosed, dopen] GetGripperForce

62 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Table 2: Request commands and corresponding possible responses (continued)

COMMAND RESPONSES

Response code Command

[2163][s, m] GetWorkspaceLimitsCfg

[2164][Workspace limits configuration set successfully.] SetWorkspaceLimitsCfg

[2165][xmin, ymin, zmin,xmax, ymax, zmax] GetWorkspaceLimits

[2166] [Workspace limits set successfully.] SetWorkspaceLimits

[2167][x, y, z, r] GetToolSphere

[2168] [Tool sphere set successfully.] SetToolSphere

[2201][t, x, y, z, α, β, γ] GetRtTargetCartPos

[2202][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6] GetRtTargetJointVel

[2203][t, τ1, τ2, τ3, τ4, τ5, τ6] GetRtTargetJointTorq

[2204][t, ẋ, ẏ, ż, ωx, ωy, ωz] GetRtTargetCartVel

[2208][t, cs, ce, cw] GetRtTargetConf

[2209][t, ct] GetRtTargetConfTurn

[2210][t, θ1, θ2, θ3, θ4, θ5, θ6] GetRtJointPos

[2211][t, x, y, z, α, β, γ] GetRtCartPos

[2212][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6] GetRtJointVel

[2213][t, τ1, τ2, τ3, τ4, τ5, τ6] GetRtJointTorq

[2214][t, ẋ, ẏ, ż, ωx, ωy, ωz] GetRtCartVel

[2218][t, cs, ce, cw] GetRtConf

[2219][t, ct] GetRtConfTurn

[2220][t, n, ax, ay, az] GetRtAccelerometer

[2228][t, x, y, z, α, β, γ] GetRtWrf

[2229][t, x, y, z, α, β, γ] GetRtTrf

[2300][t, simType, phyType, hs, es, oh] GetRtExtToolStatus

[2310][t, v1, v1] GetRtValveState

[2320][t, hp, dr, gc, go] GetRtGripperState

[2321][t, p] GetRtGripperForce

[2322][t, p] GetRtGripperPos

[2323][t, p] GetRtGripperVel

[3004][End of movement.] PauseMotion

[3012][End of block.] StartProgram

[3032][e] ResetPStop

[3035][TCP dump capture started for n seconds.] TcpDump

[3036][TCP dump capture stopped.] TcpDumpStop

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 63

TCP/IP COMMUNICATION

2.5.3 Status messages
Status messages, general or error, occur without any specific action from the network client. Table 3 lists
all possible status messages.

Table 3: Status messages and descriptions

STATUS MESSAGES

Message Explanation

[3000][Connected to Meca500 x_x_x.x.x.] Confirms connection to robot.
[3001][Another user is already connected,
closing connection.]

Another user is already connected to the Meca500. The robot
disconnects from the user immediately after sending this
message.

[3002][A firmware upgrade is in progress
(connection refused).]

The firmware of the robot is being updated.

[3003][Command has reached the maximum
length.]

Too many characters before the NULL character. Possibly
caused by a missing NULL character

[3004][End of movement.] The robot has stopped moving.
[3005][Error of motion.] Motion error. Possibly caused by a collision or overload.

Correct the situation and send the ResetError command. If
the motion error persists, try power-cycling the robot.

[3006][Error of communication with drives] This error cannot be reset. The robot needs to be rebooted to
recover from this error.

[3009][Robot initialization failed due to an
internal error. Restart the robot.]

Error in robot startup procedure. Contact our technical support
team if restarting the Meca500 did not resolve the issue.

[3012][End of block.] No motion command in queue and robot joints do not move.
[3013][End of offline program.] The offline program has finished.

[3014][Problem with saved program, save a new
program.]

There was a problem saving the program.

[3016][Ignoring command while in offline mode.] A non-motion command was sent while executing a program
and was ignored.

[3017][No offline program saved.] There is no program in memory.

[3018][Loop ended. Restarting the program.] The offline program is being restarted.
[3025][Gripper error.] If the gripper was forcing when this message appeared,

overheating likely occurred. Let the gripper cool down for a few
minutes and send the ResetError command. The gripper will
stop applying a force; if it was holding a part, the part might
fall.

[3026][Robot's maintenance check has
discovered a problem. Mecademic cannot
guarantee correct movements. Please contact
Mecademic.]

A hardware problem was detected. Contact our technical
support team.

[3028][s] A torque limit was exceeded.

[3030][n] Checkpoint n was reached.

64 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

Table 3: Status messages and descriptions (continued)

STATUS MESSAGES

Message Explanation

[3031][A previously received text API command
was incorrect.]

When using EtherNet/IP, this code (received in the input tag
assembly only) indicates that the last command sent by TCP/IP
was invalid.

[3032][2/1/0] A protective stop is active (1), is no longer active but needs to
be reset (2) or is already cleared (0).

[3035][TCP dump capture started for x seconds] Sent to indicate that the requested TCP dump capture has
started and confirms the maximum duration of x seconds.

[3036][TCP dump capture stopped] Sent after a previously started TCP dump capture has finished.
[3037][Pneumatic module error] A communication error with the pneumatic module was

detected. Contact our technical support team.
[3039][External tool firmware must be updated.] Activation has failed, because the robot has detected that the

firmware of the EOAT is older than the firmware of the robot.
[3040][0/1] Indicates when an imminent collision is detected (and would

cause robot to stop motion depending on the chosen severity)
[3041][Imminent collision detected and severity
is configured to raise error.]

Sent when robot is in error due to imminent collision detected
while severity is configured to generate an error.

[3043[Excessive communication errors with
external tool.]

Too many communication errors were detected between the
I/O port and the EOAT connected to that port. This may mean
that the cable is damaged and needs to be replaced or that it
is not screwed tightly enough on either side. There may also be
a hardware problem with the I/O port.

[3044][Abnormal communication error with
external port.]

Detected internal communication errors with the robot's I/O
port. Please contact Mecademic support for further diagnostic.

[3070][1/0] E-Stop or P-Stop 1 raised (1) or cleared (0).

2.5.4 Monitoring port messages
The Meca500 is configured to send immediate robot feedback over TCP port 10001. Several kinds of
feedback messages are sent over this port, some of which are optional (see SetRealTimeMonitoring):

Table 4: Monitoring port messages

MONITORING PORT MESSAGES

Message Description

[2007][as, hs, sm, es, pm, eob, eom] Response from the GetStatusRobot command (only when the
data changes and at connection, but can be sent several times
during a monitoring interval)

[2026][θ1, θ2, θ3, θ4, θ5, θ6] Joint set

[2027][x, y, z, α, β, γ] Pose of the TRF with respect to the WRF

[2049][Recovery mode enabled] The recovery mode becomes enabled.

[2050][Recovery mode disabled] The recovery mode becomes disabled.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 65

TCP/IP COMMUNICATION

Table 4: Monitoring port messages (continued)

MONITORING PORT MESSAGES

Message Description

[2079][ge, hs, hp, lr, es, oh] Response from the legacy GetStatusGripper command (sent
only when a gripper is installed and its status changes and at
connection, but can be sent several times during a monitoring
interval)

[2200][t, θ1, θ2, θ3, θ4, θ5, θ6] GetRtTargetJointPos

[2201][t, x, y, z, α, β, γ] GetRtTargetCartPos

[2202][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6] GetRtTargetJointVel

[2203][t, τ1, τ2, τ3, τ4, τ5, τ6] GetRtTargetJointTorq

[2204][t, ẋ, ẏ, ż, ωx, ωy, ωz] GetRtTargetCartVel
[2208][t, cs, ce, cw] Response from the GetRtTargetConf command (only when the

data changes and at connection)
[2209][t, ct] Response from the GetRtTargetConfTurn command (only

when the data changes and at connection)
[2210][t, θ1, θ2, θ3, θ4, θ5, θ6] GetRtJointPos

[2211][t, x, y, z, α, β, γ] GetRtCartPos

[2212][t, θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6] GetRtJointVel

[2213][t, τ1, τ2, τ3, τ4, τ5, τ6] GetRtJointTorq

[2214][t, ẋ, ẏ, ż, ωx, ωy, ωz] GetRtCartVel

[2218][t, cs, ce, cw] GetRtConf

[2219][t, ct] GetRtConfTurn

[2220][t, n, ax, ay, az] GetRtAccelerometer

[2228][t, x, y, z, α, β, γ] Response from the GetRtWrf command (only when the data
changes and at connection)

[2229][t, x, y, z, α, β, γ] Response from the GetRtTrf command (only when the data
changes and at connection).

[2300][t, simType, phyType, hs, es, oh] Response from the GetRtExtToolStatus command (only when
the data changes and at connection).

[2310][t, v1, v1] Response from the command GetRtValveState (only when the
data changes and at connection).

[2320][t, hp, dr, gc, go] Response from the command GetRtGripperState (only when
the data changes and at connection).

[2321][t, p] GetRtGripperForce

[2322][t, p] GetRtGripperPos

[2323][t, p] GetRtGripperVel
[2230][t] End-of-cycle event. Although the messages listed above are not

sent in the order shown, this message is always last.

66 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

TCP/IP COMMUNICATION

By default, these feedback messages are sent every 15 ms. The time interval between subsequent
feedback messages can be configured using the SetMonitoringInterval command. Note that multiple
ASCII messages are separated by a single null-character and that there are no blank spaces in any of
these messages.

Optional messages enabled using SetRealTimeMonitoring(2200,2201), are redundant; they provide
the same data as messages 2026 and 2027 (legacy messages). Message 2079 provides the same data as
messages 2320 and 2300.

Here is an example of messages sent over TCP port 10001 in one interval (for clarity, the null-characters
have been replaced by line breaks):

[2026][-102.6011,-0.0000,-78.9239,-0.0000,15.7848,110.3150]
[2027][-3.7936,-16.9703,457.5125,26.3019,-5.6569,9.0367]
[2208][58675156984,-1,-1,1]
[2209][58675156984,0]
[2230][58675156984]

Finally, when a client (PC, PLC, etc.) connects to a Meca500, the robot sends the following messages first:
2007, 2310, 2320, 2209, 2228, and 2229. It also sends the message "[3070][1]", if the robot is in E-Stop.

2.6. Management of errors and hardware stops

2.6.1 Errors detected by the robot
The robot goes into error mode when it encounters an error while executing a command (see Table 1)
or a hardware problem (e.g., a torque limit has been exceeded). It then changes to 1 the value of es
(error state) in the response [2007][as, hs, sm, es, pm, eob, eom] of the GetStatusRobot. Recall that you
can also receive this message over the monitoring port (see Section 2.5.4). In addition, if you send other
commands to the robot, it will respond with the [1011][The robot is in error.] message.

When the robot is in error move, all pending motion commands are canceled (i.e., the motion queue is
cleared), the robot stops and ignores subsequent commands (but responds with the [1011] message)
until it receives a ResetError command. The robot will then execute all request commands and start to
accumulate motion commands in its motion queue. However, the commands in the motion queue will
be executed only once the ResumeMotion command is received by the robot.

2.6.2 SWStop
As soon as the externally wired SWStop is activated (see the Meca500 User Manual), the robot motion
is stopped and the response [3032][1] is sent by the robot. The motors and the EOAT are still active (i.e.
the brakes are not applied) but remain immobilized until the SWStop is reset. The rest of the trajectory is
deleted (i.e., the motion queue is emptied).

If a motion command is sent to the robot while the SWStop signal is still on (and the robot is still
activated and homed), the command will be ignored and the message [3032][1] will be sent again by
the robot. If the SWStop signal is removed, and another motion command is sent, the command will be
ignored and the message [3032][2] will be sent.

Finally, to reset the SWStop, you must remove the SWStop signal, and then send the command
ResetPStop. The robot will respond with the message [3032][0].

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 67

TCP/IP COMMUNICATION

2.6.3 E-Stop and P-Stop 1
Currently, the Meca500 cannot detect the difference between the ESTOP button on the power supply,
an externally wired E-Stop (pins E-Stop on the D-SUB connector) or an externally wired protective stop
(pins P-Stop 1), as explained in the Meca500 User Manual. Hence, for simplicity, in the remainder of this
section, we will only refer to the ESTOP button.

In revision 3 of the Meca500, the ESTOP completely shuts down the robot. In revision 4, when the ESTOP
is activated, the robot is decelerated to a full stop, the brakes are applied, power to the motors and the
EOAT connected to the robot's tool I/O port is cut, and the robot is deactivated. The robot then sends
the message [3070][1], in addition to the messages [2044] [The motion was cleared.] and [2004] [Motors
deactivated.]. The only way to reactivate the motors (and the EOAT) is to first clear the E-Stop condition,
and then press the RESET button or activate the external Reset (pins Reset), which will produce the
message [3070][0]. Then, you need to re-activate the robot with the ActivateRobot command. If the
Meca500 R4 was already homed, you do not need to home the robot again, except if an MEGP 25*
gripper was connected to the robot's tool I/O port.

After an E-Stop, all settings (parameters) that are not persistant, such as the definitions of the
TRF and the WRF, and the desired turn of joint 6, will be set to their default values.

68 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

3. COMMUNICATING OVER CyCLIC PROTOCOLS

The Meca500 can also be controlled using cyclic protocols. These protocols are described in the next
chapters, but while inherently different, they are used in a very similar way. Therefore, we will present
the concepts that are common to both protocols in this section, instead of repeating them twice.

3.1. Cyclic data
With EtherCAT, EtherNet/IP and PROFINET protocols, the Meca500 is controlled using cyclic data
exchanges. Through changes in the cyclic data, a PLC will be able to activate, configure and move the
robot, as well as monitor the robot. The cyclic data payload format is identical in these protocols. The
following explanations and data fields apply to all cyclic protocols.

3.2. Types of robot commands
The following types of commands can be sent to the robot using cyclic data.

3.2.1 Status change commands
Some cyclic data fields (bits) directly control robot status:

 • PauseMotion
 • ClearMotion
 • SimMode
 • RecoveryMode
 • BrakesControl

A change in the cyclic value of these fields will cause the corresponding status change on the robot.
The corresponding status bit in the cyclic data from the robot will then confirm when robot status has
changed.

Do not assume that robot state has changed based on some cycle count or time delay. Always
check the corresponding confirmation bit in the cyclic data from the robot. Clearing the action bit
before that confirmation may prevent the action from being performed.

3.2.2 Triggered actions
Some fields (bits) in the cyclic data directly trigger actions on the robot:

 • Activate
 • Deactivate
 • Home
 • ResetError
 • ResetPStop

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 69

COMMUNICATING OVER CyCLIC PROTOCOLS

These action bits should be set to 1 to trigger the corresponding action and cleared (reset to 0) only
once the action has been completed. Completion of the action is confirmed by the corresponding bit in
the cyclic data from the robot.

3.2.3 Motion commands
Most commands related to robot movement are posted to the robot motion queue. The robot will
execute these commands sequentially (see Section 3.2.3).

There are two types of motion commands: cyclic (velocity-mode move commands) and non-cyclic (all
other move commands):

 • velocity-mode commands (e.g., MoveJointsVel) are canceled as soon as any subsequent command
is received (or after velocity timeout);

 • other commands (e.g., MoveJoints) are executed completely before the subsequent command
starts being executed.

3.3. Sending motion commands
Motion commands are sent via three cyclic data fields and the six command arguments.

3.3.1 Command Id
We have assigned a unique number to each of the available motion commands (see Table 7). By entering
this number in the MotionCommandID field, you are specifying the motion command that is to be sent
to the robot.

3.3.2 MoveId and SetPoint
With the combination of two fields, MoveID and SetPoint, we are able to send either cyclic motion
commands (i.e., executed at every cycle) or non-cyclic motion commands (i.e., commands that are added
to the motion queue).

The SetPoint is a bit that enables or disables the robot's reception of motion commands from the cyclic
data. When this bit is cleared, the robot ignores the MotionCommandID and the MoveID fields.

The MoveID field determines if commands are cyclic (MoveID is 0) or non-cyclic (MoveID is not 0, one
new command being queued every time the MoveID value is changed).

Always wait for the robot to acknowledge the current MoveID before changing the cyclic data
(MoveID, MotionCommandID or the motion command arguments). Otherwise, a motion
command may be lost.
Always change the MoveID after updating MotionCommandID and the corresponding
arguments, otherwise the robot may receive a mix of old and new MotionCommandID and
arguments

70 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

3.3.3 Adding non-cyclic motion commands to the motion queue (position mode)
Non-cyclic motion commands (MoveJoints, MovePose, MoveLin, Delay, SetJointVel, SetConf, etc.) are
added to the motion queue and processed later (once previous commands have been completed). They
are sent by changing the MoveID field to a different non-zero integer value (while SetPoint is 1).

When MoveID is changed, the motion command defined in the MotionCommandID field will be added
to the motion queue. The robot then acknowledges by updating its own MoveID field to match your
MoveID value.

The following sequence must be followed:

 • Initially (at application startup), clear both the MoveID and SetPoint fields.
 • Then, to add a motion command to the robot's motion queue,

 – set the MotionCommandID to the value corresponding to the desired command,
 – enter the desired values for the command arguments,
 – change MoveID to a different non-zero integer value,
 – set SetPoint to 1.

 • To stop the robot immediately, set the PauseMotion bit or the ClearMotion bit.

Remember that the MoveID and MotionCommandID fields, as well as the command arguments
must not be changed until the robot acknowledges the previous motion command, by returning the
corresponding MoveID in its cyclic data.

3.3.4 Sending cyclic motion commands (velocity mode)
The only cyclic motion commands are the three velocity mode commands: MoveJointsVel,
MoveLinVelWrf, MoveLinVelTrf. They can be sent every cycle, with MoveID kept at 0 and SetPoint set
to 1.

The following sequence must be followed:

 • Initially (at application startup), clear both the MoveID and SetPoint fields.
 • To start moving the robot,

 – set MotionCommandID to the ID corresponding to the desired velocity mode command,
 – enter the desired values for the command six arguments.
 – set SetPoint to 1.

 • To change the velocity at any time (at every cycle, if needed), simply change the six arguments of
the command.

 • To stop the robot, you must reset SetPoint to 0.

Using position mode Command IDs in cyclic mode (i.e., MoveJoints, with MoveID set to 0, and
SetPoint set to 1) will quickly fill up the motion queue with copies of the same command, one
per cycle, which is certainly not the desired result.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 71

COMMUNICATING OVER CyCLIC PROTOCOLS

3.4. Cyclic data that can be sent to the robot
The protocols' cyclic data contains the following fields for data that can be sent to the robot, allowing to
perform the commands and actions described above.

See Sections 4–6 for detailed protocol-specific information about each field (like bit-offset, or protocol-
specific identifier). Below is the detailed description of each field that applies to the cyclic protocols.

3.4.1 Robot control
Table 5 lists the fields that control the status of the robot.

Table 5: Robot control fields

ROBOT STATUS CONTROL FIELDS

Field Type Description

Deactivate Bool (action) Deactivates the robot when set to 1.

Activate Bool (action) Activates the robot when set to 1 (only if Deactivate bit is 0). The special
activation done by ActivateRobot(1) is not available in cyclic protocols.

Home Bool (action) Homes the robot when set to 1 (if the robot is activated but not
homed).

ResetError Bool (action) Resets the error when set to 1.

SimMode Bool (state) Enables (when set to 1) or disables (when reset to 0) the simulation
mode (only applied when the robot is deactivated).

RecoveryMode Bool (state) Enables (when set to 1) or disables (when reset to 0) the recovery
mode.

3.4.2 Motion control
Table 6 lists the fields that control the motion of the robot.

Table 6: Motion control fields

MOTION CONTROL FIELDS

Field Type Description

MoveID Integer A user-defined number, the change of which triggers the addition of the
command specified in MotionCommandID to the motion queue.

SetPoint Bool (state) Has to be set to 1 for motion commands to be sent to the robot.
PauseMotion Bool (state) Puts the robot in pause without clearing the commands in the queue. Motion

is resumed once both the Pause-Motion and ClearMotion bits are reset to 0.
ClearMotion Bool (action/

state)
Clears the motion queue and puts the robot in pause. Motion is resumed once
both the PauseMotion and the ClearMotion bits are reset to 0.

ResetPStop Bool (state) Resets the SWStop.

72 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

3.4.3 Motion parameters
The motion parameters include the MotionCommandID and six corresponding arguments. These are
illustrated in Table 7. The list of available MotionCommandID values is given in Table 8 along with
arguments usage in each case.

Table 7: Motion parameters

MOTION PARAMETERS

Field Type Description

MotionCommandID Integer MotionCommandID (see Table 8).
Motion command
argument 1

Real First argument of the motion command, if applicable, as described in Section 2.

Motion command
argument 2

Real Second argument of the motion command, if applicable, as described in
Section 2.

Motion command
argument 3

Real Third argument of the motion command, if applicable, as described in Section 2.

Motion command
argument 4

Real Fourth argument of the motion command, if applicable, as described in Section 2.

Motion command
argument 5

Real Fifth argument of the motion command, if applicable, as described in Section 2.

Motion command
argument 6

Real Sixth argument of the motion command, if applicable, as described in Section 2.

Table 8: List of MotionCommandID numbers

MOTION COMMAND ID NUMBERS

ID Description

0 No movement: all six arguments are ignored.

1 MoveJoints, all six arguments are in degrees.

2 MovePose, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

3 MoveLin, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

4 MoveLinRelTrf, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

5 MoveLinRelWrf, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

6 Delay, argument 1 is the pause in seconds.

7 SetBlending, argument 1 is the percentage of blending, from 0 or 100.

8 SetJointVel, argument 1 is the percentage of maximum joint velocities, from 0.001 to 100.

9 SetJointAcc, argument 1 is the percentage of maximum joint accelerations, from 0.001 to 150.

10 SetCartAngVel, argument 1 is the Cartesian angular velocity limit, from 0.001 to 1000, measured in °/s.

11 SetCartLinVel, argument 1 is the linear velocity limit for the TCP, from 0.001 to 5,000, measured in mm/s.

12 SetCartAcc, argument 1 is the percentage of maximum Cartesian accelerations, ranging from 0.001 to 600.

13 SetTrf, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 73

COMMUNICATING OVER CyCLIC PROTOCOLS

Table 8: List of MotionCommandID numbers (continued)

MOTION COMMAND ID NUMBERS

ID Description

14 SetWrf, arguments 1, 2, 3 are in mm and 4, 5, 6 are in degrees.

15 SetConf, arguments 1, 2, and 3 are −1 or 1.

16 SetAutoConf, argument 1 is 0 or 1.

17 SetCheckpoint, argument 1 in an integer number, ranging from 1 to 8,000.

18 Gripper, argument 1 is 0 for GripperClose, and 1 for GripperOpen.

19 SetGripperVel, argument 1 is the percentage of maximum finger velocity (100 mm/s), from 5 to 100.

20 SetGripperForce, argument 1 is the percentage of maximum grip force (40 N), from 5 to 100.

21 MoveJointsVel, all six arguments are in °/s.

22 MoveLinVelWrf, arguments 1, 2, 3 are in mm/s and 4, 5, 6 are in °/s.

23 MoveLinVelTrf, arguments 1, 2, 3 are in mm/s and 4, 5, 6 are in °/s.

24 SetVelTimeout, argument 1 is in seconds.

25 SetConfTurn, argument 1 is an integer number, ranging from −100 to 100.

26 SetAutoConfTurn, argument 1 is 0 or 1.

27 SetTorqueLimits, all six arguments are percentage of maximum joint torque, from 0.001 to 100.
28 SetTorqueLimitsCfg, argument 1 is severity (0 to 4), argument 2 is detection mode (0 or 1). See

Section 2.1.29.
29 MoveJointsRel, all six arguments are in degrees.

30 SetValveState, both arguments are 0 or 1.

31 SetGripperRange, both arguments are in mm.

32 MoveGripper, argument 1 is in mm.

33 SetJointVelLimit, argument 1 is the percentage of override for the maximum joint velocities, from 0.001
to 150.

100 StartProgram, argument 1 is the ID of the offline program to start, from 1 to 500.

3.4.4 Host time
Table 9 lists the fields that allow the host to set robot's date/time.

Table 9: Host time fields

HOST TIME FIELDS

Field Type Description

HostTime Integer Current time in seconds since epoch (i.e., since 00:00:00 UTC January 1, 1970). If non-zero,
the robot will update its own time to this value (same as SetRtc). This is useful for robot
logs to contain meaningful time (the robot forgets time every time it's rebooted).

74 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

3.4.5 Brake control
Table 10 lists the fields that allow to control robot brakes (when deactivated) for joints 1, 2 and 3 (all
three at the same time). The brakes behavior is as follows:

 • Brakes are automatically disengaged when the robot is activated (the robot will actively maintain its
position when not moving).

 • Brakes are automatically engaged when the robot is powered-down (or P-Stop 1).
 • Brakes are automatically engaged when the robot gets deactivated.
 • Brakes are automatically engaged when the E-Stop is activated (Meca500 R4).
 • While robot is in 'deactivated' state, the brakes can be controlled using the fields below shown in
Table 10.

! Disable brakes with caution; without brakes, all links collapse downward.

Table 10: Brakes control fields

BRAKES CONTROL FIELDS

Field Type Description

EnableBrakesControl Bool Must be set to 1 to allow brakes control through cyclic data. The purpose of this
bit is to ensure that the brakes do not get inadvertently disabled if cyclic data sent
to the robot contains all zeroes.

EngageBrakes Bool If set to 1, the brakes are engaged, else the brakes are disengaged and
the robot might fall down under the effects of gravity. This bit is ignored if
EnableBrakesControl bit is cleared. This bit is ignored if the robot is activated.

3.4.6 dynamic data configuration
Table 11 lists the fields that allow choosing which dynamic data the robot will return. These values may
be set to automatic, to a fixed value, or changed every cycle, as required by the application. See Table 12
for a list of available dynamic data types. Finally, note that there may be a delay of 1 or two cycles before
the change takes effect.

Table 11: Dynamic data configuration fields

DYNAMIC DATA CONFIGURATION ID

Field Type Description

DynamicDataTypeID 1 Integer Dynamic data type for index #1 (see Table 12).

DynamicDataTypeID 2 Integer Dynamic data type for index #2 (see Table 12).

DynamicDataTypeID 3 Integer Dynamic data type for index #3 (see Table 12).

DynamicDataTypeID 4 Integer Dynamic data type for index #4 (see Table 12).

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 75

COMMUNICATING OVER CyCLIC PROTOCOLS

Table 12: List of DynamicDataTypeID values with associated values

DYNAMIC DATA TYPE ID

ID Description

0 Automatic. Robot will automatically choose dynamic data type and change it every cycle to go through
them all. This is the easiest way for the host to receive all possible values periodically (round-robin
manner).

1 Firmware version. Values: [major version, minor version, patch version, build number]. Same as
GetFwVersion.

2 Product type. Values: [product type (3=Meca500)]. Same as GetProductType.
3 Serial number. Values: [serial number]. Same as GetRobotSerial.
4 Joints offset (as calculated by mastering at production). Values: [δθ1, δθ2, δθ3, δθ4, δθ5, δθ6]. In degrees.

5–10 Reserved

11 Joint limits enabled state. Values: [enabled 1/0]. Same as GetJointLimitsCfg.
12 Robot model's nominal joint limits for joints 1, 2 and 3. Values: [θ1,min, θ1,max, θ2,min, θ2,max, θ3,min, θ3,max].

Unit is degrees. Same as GetModelJointLimits.
13 Robot model's nominal joint limits for joints 4, 5 and 6. Values: [θ4,min, θ4,max, θ5,min, θ5,max, θ6,min, θ6,max].

Unit is degrees. Same as GetModelJointLimits.
14 Effective joint limits for joints 1, 2 and 3. Values: [θ1,min, θ1,max, θ2,min, θ2,max, θ3,min, θ3,max]. Unit is degrees.

Same as GetJointLimits.
15 Effective joint limits for joints 4, 5 and 6. Values: [θ4,min, θ4,max, θ5,min, θ5,max, θ6,min, θ6,max]. Unit is degrees.

Same as GetJointLimits.
17 Current workspace limits configuration. Values: [workspace limits severity, workspace limits detection

mode]. Same as GetWorkspaceLimitsCfg.
18 Current workspace Limits. Values: [xmin, ymin, zmin, xmax, ymax, zmax]. Units is mm. Same as

GetWorkspaceLimits.
19 Tool Sphere model. Values: [x, y, z, r]. Units in mm. Same as GetToolSphere.

20 Motion queue's conf that will be applied to next MovePose. Values: [shoulder −1/1/NaN, elbow −1/1/NaN,
wrist −1/1/NaN, last joint turn or NaN]. Value NaN is used to indicate auto-conf or auto-conf-turn. Same as
GetConf and GetConfTurn.

21 Motion queue parameters. Values: [blending ratio percent, velocity timeout in seconds]. Same as
GetBlending and GetVelTimeout.

22 Motion queue velocities and accelerations in percent. Values: [joint velocity, joint acceleration, Cartesian
linear velocity, Cartesian angular velocity, Cartesian acceleration]. Unit is percent. Same as GetJointVel,
GetJointAcc, GetCartLinVel, GetCartAngVel, and GetCartAcc.

23 Gripper parameters. Values: [gripper force, gripper velocity, fingers opening corresponding to closed state,
fingers opening corresponding to open state]. Arguments 1 and 2 are in percentage, while arguments 3
and 4 are in mm. Same as GetGripperForce, GetGripperVel, and GetGripperRange.

24 Torque limits configuration. Values: [severity, detection mode]. See Section 2.1.29 for corresponding
severity/mode values. Same as GetTorqueLimitsCfg.

25 Torque limits. Values: [joint 1 limit, joint 2 limit, ..., joint 6 limit]. Unit is percent. Same as GetTorqueLimits.

32 Target real-time joint velocity. Values: [θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]. Unit is °/s. Same as GetRtTargetJointVel.
33 Target real-time joint torque (not implemented yet). Values: [joint 1 torque, joint 2 torque, ..., joint 6

torque]. Unit is percent. Same as GetRtTargetJointTorq.

76 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

 Table 12: List of DynamicDataTypeID values with associated values (continued)

DYNAMIC DATA TYPE ID

ID Description

34 Target real-time Cartesian velocity (TRF with respect to. WRF). Values: [ẋ, ẏ, ż, ωx, ωy, ωz]. Units are mm/s
or °/s. Same as GetRtTargetCartVel.

40 Actual real-time joint position based on hardware encoders. Values: [θ1, θ2, θ3, θ4, θ5, θ6]. Unit is degrees.
Same as GetRtJointPos.

41 Actual real-time end-effector pose (TRF with respect to. WRF). Values: [x, y, z, α, β, γ]. Units are mm or
degrees. Same as GetRtCartPos.

42 Actual real-time joint velocity. Values: [θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]. Unit is °/s. Same as GetRtJointVel.
43 Actual real-time joint torque. Values: [joint 1 torque, joint 2 torque, ..., joint 6 torque]. Unit is percent.

Same as GetRtJointTorq.
44 Actual real-time cartesian velocity (TRF with respect to. WRF). Values: [ẋ, ẏ, ż, ωx, ωy, ωz]. Units are mm/s

or °/s. Same as GetRtCartVel.
45 Actual conf that corresponds to real-time end-effector pose. Values: [shoulder −1/0/1, elbow −1/0/1, wrist

−1/0/1, last joint turn]. Same as GetRtConf and GetRtConfTurn.
46 Accelerometer reading. Values: [ax, ay, az]. Unit is 1/16,000 of G. Same as GetRtAccelerometer.

52 External tool status. Values: [type, homing done, error state, overheated]. Same as GetRtExtToolStatus.
53 EOAT status. Values if type gripper: [holding part, desired fingers opening reached, gripper closed, gripper

open, gripper force, fingers opening]. Values if pneumatic module: [valve 1 state, valve 2 state].

To avoid data duplication, the dynamic data (above) do not include data that is already provided
in the explicit tables mentioned next (i.e., target joint position, target end-effector pose with
corresponding configuration, WRF and TRF).

3.5. Cyclic data received from the robot
Every cycle, the robot reports:

 • RobotStatus, as described in Table 13.
 • MotionStatus, as described in Table 14.
 • TargetJointSet. Values: [θ1, θ2, θ3, θ4, θ5, θ6]. Unit is in degrees. Same as GetRtTargetJointPos.
 • Corresponding target pose (TRF with respect to WRF) and associated information:

 – TargetEndEffectorPose. Values: [x, y, z, α, β, γ]. Units are in mm or degrees. Same as
GetRtTargetCartPos.

 – TargetConfiguration. Values: [shoulder −1/1, elbow −1/1, wrist −1/1, last joint turn]. Same as the
combination of GetRtTargetConf and GetRtTargetConfTurn.

 – WRF (with respect to BRF) Values: [x, y, z, α, β, γ]. Units are in mm or degrees. Same as GetRtWrf.
 – TRF (with respect to BRF) Values: [x, y, z, α, β, γ]. Units are in mm or degrees. Same as GetRtTrf.

 • Robot timestamp, as described in Table 15.
 • DynamicData #1, #2, #3, #4. See Table 16.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 77

COMMUNICATING OVER CyCLIC PROTOCOLS

Table 13: Robot status

ROBOT STATUS

Field Type Description

ErrorCode Integer Indicates the error code (see Tables 1 and 3) or 0, if there is no error.

Busy Bool True only while the robot is being activated, homed or deactivated.

Activated Bool Indicates whether the motors are on (powered).

Home Bool Indicates whether the robot is homed and ready to receive motion commands.

SimActivated Bool Indicates whether the robot simulation mode is activated.

BrakesEngaged Bool Indicates whether the brakes are engaged.

RecoveryMode Bool Indicates whether the robot recovery mode is activated.

EStop Bool Indicates whether the E-Stop is activated (Meca500 R4 only).

Table 14: Motion status

MOTION STATUS

Field Type Description

Checkpoint Integer Indicates the last checkpoint number reached (the value stays unchanged
until another checkpoint number is reached). See Section 2.1.19 for a detailed
description of checkpoints.

MoveID Integer Acknowledges the MoveID of the last motion command queued for execution.
FIFOSpace Integer The number of commands that can be added to the robot's motion queue at any

given time (the maximum is 13,000). If 0 (too many commands sent), subsequent
commands will be ignored.

Paused Bool Indicates whether the motion is paused. This bit will remain set (and robot will
remain paused) as long as motion control bits Pause or ClearMotion remain set.
Motion will resume once both Pause and ClearMotion bits become 0.

EOB Bool The End of Block (EOB) bit is true only when the robot is not moving and there is
no motion command left in the motion queue. Note that the EOB bit may be raised
before all sent commands have been completed, due to network or processing
delays. Therefore, do not rely on this flag to be informed when a sequence of
movements has been completed (use a checkpoint instead).

EOM Bool The End Of Motion (OOM) bit is true if the robot is not moving. Note that the
EOM bit may be raised between two consecutive motion commands. Therefore,
do not rely on this flag to be informed when a sequence of movements has been
completed (use a checkpoint instead).

Cleared Bool Indicates whether the motion queue is cleared. If the queue is cleared, the robot is
not moving. This bit will remain true (and robot will remain paused) as long as the
motion control bit ClearMotion remains set. Motion will resume once both Pause
and ClearMotion bits become 0.

PStop2 Bool Indicates whether the SWStop (previously called P-Stop 2) is set.
ExcessiveTorque Bool Indicates whether a joint torque is exceeding the corresponding user-defined

torque limit.

78 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

COMMUNICATING OVER CyCLIC PROTOCOLS

Table 14: Motion status (continued)

MOTION STATUS

Field Type Description

PStop2Resettabe Bool Indicates whether the SWStop (previously called P-Stop 2) is removed, but is not
reset yet.

OfflineProgramID Integer ID of the offline program currently running (0 if none).

Table 15: Robot timestamp

ROBOT TIMESTAMP

Field Type Description

RobotTimestamp (seconds part) Integer Robot's monotonic timestamp (seconds) based on arbitrary reference.

RobotTimestamp (microseconds
part)

Integer Robot's monotonic timestamp (microseconds within current second).

DynamicDataUpdateCount Integer Number of times all available dynamic data has been refreshed (see
value 'Automatic' in Table 11).

Table 16: Robot dynamic data

ROBOT DYNAMIC DATA

Field Type Description

DynamicDataTypeID Integer Dynamic data type (among values in Table 11).

Value 1 Real First associated value (see corresponding DynamicDataTypeID in Table 12).

Value 2 Real Second associated value (see corresponding DynamicDataTypeID in Table 12).

Value 3 Real Third associated value (see corresponding DynamicDataTypeID in Table 12).

Value 4 Real Fourth associated value (see corresponding DynamicDataTypeID in Table 12).

Value 5 Real Fifth associated value (see corresponding DynamicDataTypeID in Table 12).

Value 6 Real Sixth associated value (see corresponding DynamicDataTypeID in Table 12).

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 79

ETHERCAT COMMUNICATION

4. ETHERCAT COMMUNICATION

EtherCAT is an open real-time Ethernet protocol originally developed by Beckhoff Automation. When
communicating with the Meca500 over EtherCAT, you can obtain guaranteed response times of 1 ms.
Furthermore, you no longer need to parse strings as when using the TCP/IP protocol.

4.1. Overview

4.1.1 Connection types
If using EtherCAT, you can connect several Meca500 robots in different network topologies, including
line, star, tree, or ring, since each robot has a unique node address. This enables targeted access to a
specific robot even if your network topology changes.

4.1.2 ESI file
The EtherCAT Slave Information (ESI) XML file for the Meca500 robot can be found in the zip file that
contains your robot's firmware update. These zip files are available in the Downloads section of our web
site.

4.1.3 Enabling EtherCAT
The default communication protocol of the robot is the Ethernet TCP/IP protocol. The latter is
the protocol needed for jogging the robot through its web interface. To switch to the EtherCAT
communication protocol, you must send the SwitchToEtherCAT command via the TCP/IP protocol from
an external client (e.g., from a PC using a Web browser).

As soon as the robot receives this command, the Ethernet TCP/IP connection LED (i.e., #1 or #2 in
Figure 14) will go off, then turn back on. This means that the robot is now in EtherCAT mode and can be
connected to an EtherCAT master. Note, however, than until EtherCAT is disabled, TCP/IP or EtherNet/
IP communication is not possible (e.g., you cannot use the robot's web interface). To disable EtherCAT,
use the Communication mode SDO (Section 4.2.16) or perform a network settings reset (by keeping the
power button on the robot's base pressed for a few seconds during restart).

4.1.4 LEds
When EtherCAT communication is enabled, the three LEDs on the outer edge of the robot's base
(Figure 14) communicate the state of the EtherCAT connection, as summarized in Table 17.

Figure 14: EtherCAT LEDs

https://www.mecademic.com/support/

80 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

Table 17: EtherCAT LED description

ETHERCAT LED DESCRIPTION

LED Name LED State EtherCAT state
#1 IN port link On Link is active but there is no activity

Blinking Link is active and there is activity

Off Link is inactive
#2 OUT port link On Link is active but there is no activity

Blinking Link is active and there is activity

Off Link is inactive
#3 Run On Operational

Blinking Pre-Operational

Single flash Safe-Operational

Off Init

4.2. Object dictionary
This section describes all objects available for interacting with the Meca500. Please refer to Section 3 for
a description of these objects and their fields. The current section simply defines how these objects are
mapped to EtherCAT cyclic Process Data Object (PDO). There are also two EtherCAT-specific Service Data
Objects (SDO), presented in the last two subsections.

In the tables of this section, SI stands for subindex, and "O. code" for "Object code".

4.2.1 Robot control
This object controls the robot's initialization and simulation. Table 18 describes the object's indices. See
Table 5 for detailed explanations.

Table 18: Robot control object

ROBOT CONTROL OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7200h Record RobotControl RO none

1 Variable BOOL Deactivate 0 0 1 RW 1600h:1

2 Variable BOOL Activate 0 0 1 RW 1600h:2

3 Variable BOOL Home 0 0 1 RW 1600h:3

4 Variable BOOL ResetError 0 0 1 RW 1600h:4

5 Variable BOOL SimMode 0 0 1 RW 1600h:5

6 Variable BOOL RecoveryMode 0 0 1 RW 1600h:6

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 81

ETHERCAT COMMUNICATION

4.2.2 Motion control
This object controls the actual robot movement. Table 19 describes the object's indices. See Table 5 for
detailed explanations.

Table 19: Motion control objects

MOTION CONTROL OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7310h Record MotionControl RO none

1 Variable UINT MoveID 0 0 65,535 RW 1601h:1

2 Variable BOOL SetPoint 0 0 1 RW 1601h:2

3 Variable BOOL PauseMotion 0 0 1 RW 1601h:3

4 Variable BOOL ClearMotion 0 0 1 RW 1601h:4

5 Variable BOOL ResetPStop 0 0 1 RW 1601h:5

4.2.3 Movement
The movement object is a pair of indices. The first index is the ID number indicating the motion
command, while the second index has six subindices corresponding to the arguments of the motion
command, as described in Table 20. See Section 3.3 and Section 3.4 for detailed explanations.

Table 20: Movement objects

MOVEMENT OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7305h Variable UDINT MotionCommandID 0 0 100 RO 1602h.1
7306h Array Arguments RO none

1 Variable REAL Motion command
argument 1 † † † RW 1602h.2

2 Variable REAL Motion command
argument 2 † † † RW 1602h.3

3 Variable REAL Motion command
argument 3 † † † RW 1602h.4

4 Variable REAL Motion command
argument 4 † † † RW 1602h.5

5 Variable REAL Motion command
argument 5 † † † RW 1602h.6

6 Variable REAL Motion command
argument 6 † † † RW 1602h.7

† depending on the value of index 7305h (refer to Table 7).

82 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

4.2.4 Host time
This object controls robot's date/time (real-time-clock). Table 21 describes the object's indices. See Table
9 for detailed explanations.

Table 21: Host time object

HOST TIME OBJECT INDICES
Index SI O. code Type Name Default Min. Max. Access PDO
7400h Record HostTime RO none

1 Variable UDINT Time since epoch in seconds 0 0 232 − 1 RW 1610h:1

4.2.5 Brake control
This object controls robot's brakes (applies only when robot is deactivated). Table 22 describes the
object's indices. See Table 10 for detailed explanations about brakes behavior.

Table 22: Brakes control object

BRAKE CONTROL OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7410h Record BrakesControl RO none

1 Variable BOOL EnableBrakes-Control 0 0 1 RW 1611h:1

2 Variable BOOL EngageBrakes 0 0 1 RW 1611h:2

4.2.6 dynamic data configuration
This objects are used to choose which dynamic data type the robot will return. The following four tables
describe the object's indices. See Table 12.

Table 23: Dynamic data configuration object 1

DYNAMIC DATA CONFIGURATION OBJECT 1 INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7420h Record DynamicDataConfiguration 1 RO none

1 Variable UDINT DynamicData-TypeID 0 0 53 RW 1620h:1

Table 24: Dynamic data configuration object 2

DYNAMIC DATA CONFIGURATION OBJECT 2 INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7421h Record DynamicDataConfiguration 2 RO none

1 Variable UDINT DynamicData-TypeID 0 0 53 RW 1621h:1

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 83

ETHERCAT COMMUNICATION

Table 25: Dynamic data configuration object 3

DYNAMIC DATA CONFIGURATION OBJECT 3 INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7422h Record DynamicDataConfiguration 3 RO none

1 Variable UDINT DynamicData-TypeID 0 0 53 RW 1622h:1

Table 26: Dynamic data configuration object 4

DYNAMIC DATA CONFIGURATION OBJECT 4 INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

7423h Record DynamicDataConfiguration 4 RO none

1 Variable UDINT DynamicData-TypeID 0 0 53 RW 1623h:1

4.2.7 Robot status
The structure of the robot status object is described in Table 27. See Table 13 for detailed explanations.

Table 27: Robot status object

ROBOT STATUS OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6010h Record RobotStatus RO none

2 Variable BOOL Busy n/a 0 1 RO 1A00h.2

3 Variable BOOL Activated n/a 0 1 RO 1A00h.3

4 Variable BOOL Homed n/a 0 1 RO 1A00h.4

5 Variable BOOL SimMode n/a 0 1 RO 1A00h.5

6 Variable BOOL BrakesEngaged n/a 0 1 RO 1A00h.6

7 Variable BOOL RecoveryMode n/a 0 1 RO 1A00h.7

1 Variable UINT ErrorCode n/a 0 65,535 RO 1A00h.1

84 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

4.2.8 Motion status
The structure of the motion status object is described in Table 28. See Table 14 for detailed
explanations.

Table 28: Motion status object

MOTION STATUS OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6015h Record MotionStatus RO none

1 Variable UDINT Checkpoint n/a 0 8,000 RO 1A01h.1

2 Variable UINT MoveID n/a 0 65,535 RO 1A01h.2

3 Variable UINT FIFOSpace n/a 0 13,000 RO 1A01h.3

5 Variable BOOL Paused n/a 0 1 RO 1A01h.5

6 Variable BOOL EOB n/a 0 1 RO 1A01h.6

7 Variable BOOL EOM n/a 0 1 RO 1A01h.7

8 Variable BOOL Cleared n/a 0 1 RO 1A01h.8

9 Variable BOOL PStop n/a 0 1 RO 1A01h.9

10 Variable BOOL ExcessiveTorque n/a 0 1 RO 1A01h.10

10 Variable UINT (10 unused bits) n/a 0 0 RO n/a

4 Variable UINT OfflineProgramID n/a 0 500 RO 1A01h.4

4.2.9 Target joint set
The structure of the real-time target joint set object is described below. The data is the same as that
returned by TCP/IP command GetRtTargetJointPos.

Table 29: Target joint set object

TARGET JOINT SET OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6030h Array TargetJointSet RO none

1 REAL Target position of joint 1 n/a −175 175 RO 1A02h.1

2 REAL Target position of joint 2 n/a −70 90 RO 1A02h.2

3 REAL Target position of joint 3 n/a −135 70 RO 1A02h.3

4 REAL Target position of joint 4 n/a −170 170 RO 1A02h.4

5 REAL Target position of joint 5 n/a −115 115 RO 1A02h.5

6 REAL Target position of joint 6 n/a −36,000 36,000 RO 1A02h.6

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 85

ETHERCAT COMMUNICATION

4.2.10 Target end-effector pose
The structure of the real-time target end-effector pose object is described in Table 30. The data is the
same as that returned by TCP/IP command GetRtTargetCartPos.

Table 30: Target end-effector pose object

END-EFFECTOR POSE OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6031h Array TargetEndEffectorPose RO none

1 REAL Coordinate x n/a −3.4E38 3.4E38 RO 1A03h.1

2 REAL Coordinate y n/a −3.4E38 3.4E38 RO 1A03h.2

3 REAL Coordinate z n/a −3.4E38 3.4E38 RO 1A03h.3

4 REAL Euler angle α n/a −3.4E38 3.4E38 RO 1A03h.4

5 REAL Euler angle β n/a −3.4E38 3.4E38 RO 1A03h.5

6 REAL Euler angle γ n/a −3.4E38 3.4E38 RO 1A03h.6

4.2.11 Target configuration
The structure of the real-time target configuration object is described in Table 31. The data is
the same as that returned by the combination of the TCP/IP commands GetRtTargetConf and
GetRtTargetConfTurn.

Table 31: Target configuration object

TARGET CONFIGURATION OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6046h Array TargetConfiguration RO none

1 INT8 cs (shoulder) n/a −1 1 RO 1A08h.1

2 INT8 ce (elbow) n/a −1 1 RO 1A08h.2

3 INT8 cw (wrist) n/a −1 1 RO 1A08h.3

4 INT8 ct (last joint turn) n/a −100 100 RO 1A08h.4

86 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

4.2.12 WRf
The structure of the real-time WRF object is described in Table 32. The data is the same as that returned
by TCP/IP command GetRtWrf.

Table 32: WRF object

WRF OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6050h Array WRF RO none

1 REAL Coordinate x n/a −3.4E38 3.4E38 RO 1A09h.1

2 REAL Coordinate y n/a −3.4E38 3.4E38 RO 1A09h.2

3 REAL Coordinate z n/a −3.4E38 3.4E38 RO 1A09h.3

4 REAL Euler angle α n/a −3.4E38 3.4E38 RO 1A09h.4

5 REAL Euler angle β n/a −3.4E38 3.4E38 RO 1A09h.5

6 REAL Euler angle γ n/a −3.4E38 3.4E38 RO 1A09h.6

4.2.13 TRf
The structure of the real-time TRF object is described in Table 33. The data is the same as that returned
by TCP/IP command GetRtTrf.

Table 33: TRF object

TRF OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6051h Array TRF RO none

1 REAL Coordinate x n/a −3.4E38 3.4E38 RO 1A0Ah.1

2 REAL Coordinate y n/a −3.4E38 3.4E38 RO 1A0Ah.2

3 REAL Coordinate z n/a −3.4E38 3.4E38 RO 1A0Ah.3

4 REAL Euler angle α n/a −3.4E38 3.4E38 RO 1A0Ah.4

5 REAL Euler angle β n/a −3.4E38 3.4E38 RO 1A0Ah.5

6 REAL Euler angle γ n/a −3.4E38 3.4E38 RO 1A0Ah.6

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 87

ETHERCAT COMMUNICATION

4.2.14 Robot timestamp
The structure of the Robot timestamp object is described in Table 34. See Table 15 for detailed
explanations.

Table 34: Robot timestamp object

TIMESTAMP OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6060h Array RobotTimestamp RO none
1 UDINT RobotTimestamp (seconds

part)
n/a 0 232 − 1 RO 1A10h.1

2 UDINT RobotTimestamp
(microseconds part)

n/a 0 232 − 1 RO 1A10h.2

3 UDINT DynamicDataUpdate n/a 0 232 − 1 RO 1A10h.3

4.2.15 dynamic data
The structure of the dynamic data objects are described in the following four tables. See Table 11 for
detailed explanations.

Table 35: Dynamic data object 1

DYNAMIC DATA 1 OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6070h Array DynamicData RO none

1 UDINT DynamicDataType n/a 0 53 RO 1A20h.1

2 REAL Value 1 n/a † † RO 1A20h.2

3 REAL Value 2 n/a † † RO 1A20h.3

4 REAL Value 3 n/a † † RO 1A20h.4

5 REAL Value 4 n/a † † RO 1A20h.5

6 REAL Value 5 n/a † † RO 1A20h.6

7 REAL Value 6 n/a † † RO 1A20h.7
† depending on the value of 1A20h.1 (refer to Table 11).

88 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

Table 36: Dynamic data object 2

DYNAMIC DATA 2 OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6071h Array DynamicData RO none
1 UDINT DynamicData-TypeID n/a 0 53 RO 1A21h.1

2 REAL Value 1 n/a † † RO 1A21h.2

3 REAL Value 2 n/a † † RO 1A21h.3

4 REAL Value 3 n/a † † RO 1A21h.4

5 REAL Value 4 n/a † † RO 1A21h.5

6 REAL Value 5 n/a † † RO 1A21h.6

7 REAL Value 6 n/a † † RO 1A21h.7
† depending on the value of 1A21h.1 (refer to Table 11).

Table 37: Dynamic data object 3

DYNAMIC DATA 3 OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6072h Array DynamicData RO none

1 UDINT DynamicData-TypeID n/a 0 53 RO 1A22h.1

2 REAL Value 1 n/a † † RO 1A22h.2

3 REAL Value 2 n/a † † RO 1A22h.3

4 REAL Value 3 n/a † † RO 1A22h.4

5 REAL Value 4 n/a † † RO 1A22h.5

6 REAL Value 5 n/a † † RO 1A22h.6

7 REAL Value 6 n/a † † RO 1A22h.7
† depending on the value of 1A22h.1 (refer to Table 11).

Table 38: Dynamic data object 4

DYNAMIC DATA 4 OBJECT INDICES

Index SI O. code Type Name Default Min. Max. Access PDO

6073h Array DynamicData RO none

1 UDINT DynamicData-TypeID n/a 0 53 RO 1A23h.1

2 REAL Value 1 n/a † † RO 1A23h.2

3 REAL Value 2 n/a † † RO 1A23h.3

4 REAL Value 3 n/a † † RO 1A23h.4

5 REAL Value 4 n/a † † RO 1A23h.5

6 REAL Value 5 n/a † † RO 1A23h.6

7 REAL Value 6 n/a † † RO 1A23h.7
† depending on the value of 1A23h.1 (refer to Table 11).

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 89

ETHERCAT COMMUNICATION

4.2.16 Communication mode (SdO)
When EtherCAT is enabled, subindex 1 of this SDO is equal to 2 (see table below). Currently, you cannot
change the communication mode for port ECAT OUT and therefore subindex 2 of this SDO is ignored
(will always be the same as that of port ECAT IN). To switch both ports to TCP/IP, change the value of
subindex 1 to 1.

Table 40: Communication mode SDO

COMMUNICATION MODE SDO

Index SI O. code Type Name Default Min. Max. Access PDO

8000h Record Communication mode RO n/a

1 Variable USINT Port In 1 1 2 RW n/a

2 Variable USINT Port Out (ignored) 1 1 2 RW n/a

4.3. PdO Mapping
The process data objects (PDOs) provide the interface to the application objects. The PDOs are used
to transfer data via cyclic communications in real time. PDOs can be reception PDOs (RxPDOs), which
receive data from the EtherCAT master (the PLC or the industrial PC), or transmission PDOs (TxPDOs),
which send the current value from the slave (the Meca500) to the EtherCAT master.

In the previous section, we listed the PDOs object dictionary. PDO assignment is summarized in the next
two tables.

Table 41: RxPDOs

RECEIVING PDO

PDO Object(s) Name Note

1600h 7200h RobotControl Mandatory. See Table 18.

1601h 7310h MotionControl Mandatory. See Table 19

1602h 7305h, 7306h Movement Mandatory. See Table 20.

1610h 7400h HostTime Mandatory. See Table 21.

1611h 7410h BrakesControl Mandatory. See Table 22.

1620h 7420h DynamicDataConfiguration 1 Mandatory. See Table 23.

1621h 7421h DynamicDataConfiguration 2 Mandatory. See Table 24.

1622h 7422h DynamicDataConfiguration 3 Mandatory. See Table 25.

1623h 7423h DynamicDataConfiguration 4 Mandatory. See Table 26.

90 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERCAT COMMUNICATION

Table 42: TxPDOs

TRANSMISSION PDO

PDO Object Name Note

1A00h 6010h RobotStatus Mandatory. See Table 27

1A01h 6015h MotionStatus Mandatory. See Table 28.

1A02h 6030h TargetJointSet Optional. See Table 29.

1A03h 6031h TargetEndEffectorPose Optional. See Table 30.

1A08h 6046h TargetConfiguration Optional. See Table 31.

1A09h 6050h WRF Optional. See Table 32.

1A0Ah 6051h TRF Optional. See Table 33.

1A10h 6060h RobotTimestamp Optional. See Table 34.

1A20h 6070h DynamicData #1 Optional. See Table 35.

1A21h 6071h DynamicData #2 Optional. See Table 36.

1A22h 6072h DynamicData #3 Optional. See .

1A23h 6073h DynamicData #4 Optional. See Table 38.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 91

ETHERNET/IP COMMUNICATION

5. ETHERNET/IP COMMUNICATION

Certified by ODVA, the Meca500 is compatible with the EtherNet/IP protocol. A common industry
standard, it can be used with many different PLC brands. Tested to work at 10 ms, faster times are also
possible. The Meca500 typically uses implicit (cyclic) messaging.

Refer to our Support Center for specific PLC examples.

5.1. Connection types
When using EtherNet/IP, you can connect several Meca500 robots in the same way as with TCP/IP.
Either Ethernet port on the base of the robot can be used. Meca500 robots can be either daisy-chained
together or connected in a star pattern. The two ports on the Meca500 act as a switch in EtherNet/IP
mode.

5.2. EdS file
The Electronic Data Sheet (EDS) file for the Meca500 robot can be found in the zip file that contains your
robot's firmware update. These zip files are available in the Downloads section of our web site.

5.3. forward open exclusivity
The Meca500 robot will allow only one controlling connection at the time (either a TCP/IP connection or
through an EtherNet/IP forward-open request).

If already being controlled, the robot will refuse a forward-open request with status error 0x106,
Ownership Conflict, in EtherNet/IP. It will refuse a TCP/IP connection with error [3001]. However, the web
interface can still be used in monitoring mode.

5.4. Enabling Ethernet/IP
To enable the EtherNet/IP communication protocol, you must connect to the robot via the TCP/
IP protocol first from an external client (e.g., from a PC using a Web browser), then send the
EnableEtherNetIP(1) command. This is a persistent command, so it only needs to be set once. To
disable EtherNet/IP, you need to send the EnableEtherNetIP(0) command.

Note that EtherNet/IP can be left permanently enabled as it does not prevent using the TCP/IP protocol,
unlike EtherCAT and the SwitchToEtherCAT command.

5.5. Output tag assembly
The output tag assembly has an Instance of 150 with a size 60-byte array, as detailed below. Refer to
Section 3 for a description of the different objects and their fields. The following subsections only define
how these objects are mapped to EtherNet/IP output tag assembly (as also described in the EDS file).

https://support.mecademic.com/
https://www.mecademic.com/support/

92 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERNET/IP COMMUNICATION

Table 43: Output tag assembly

OUTPUT TAG ASSEMBLY

Bytes Data Type Name Description

0–3 DWORD RobotControl See Table 44.

4–5 UINT MoveID See Table 45.

6–7 WORD MotionControl See Table 46.

8–11 UDINT Movement See Table 47.

12–15 REAL Argument 1 for Movement See Table 48.

16–19 REAL Argument 2 for Movement See Table 48.

20–23 REAL Argument 3 for Movement See Table 48.

24–27 REAL Argument 4 for Movement See Table 48.

28–31 REAL Argument 5 for Movement See Table 48.

32–35 REAL Argument 6 for Movement See Table 48.

36–39 DINT HostTime See Table 49.

40–43 DWORD BrakesControl See Table 50.

44–47 UDINT DynamicDataConfiguration 1 See Table 51.

48–51 UDINT DynamicDataConfiguration 2 See Table 51.

52–45 UDINT DynamicDataConfiguration 3 See Table 51.

46–59 UDINT DynamicDataConfiguration 4 See Table 51.

5.5.1 Robot control tag
This tag controls the robot's initialization and simulation. Table 44 describes the tag's bits. See Table 5
for detailed explanations.

Table 44: Robot control tag

CONTROL TAGS

Bytes Data Type Bits 6–31 Bit 4 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0

0–3 DWORD Unused Recovery-Mode Sim-Mode Reset-Error Home Activate Deactivate

5.5.2 MoveId tag
This tag (Table 45) contains the distinct user-defined ID number associated with each motion command
sent to the robot. See Table 6 for detailed explanations.

Table 45: MoveID tag

MOVEID TAG

Bytes Data Type Name Minimum Maximum

4–5 UINT MoveID 0 65,535

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 93

ETHERNET/IP COMMUNICATION

5.5.3 Motion control tag
This tag controls the actual robot movement. Table 46 describes the tag's bits. See Table 6 for details.

Table 46: Motion control tag

MOTION CONTROL TAGS

Bytes Data Type Bits 4–15 Bit 3 Bit 2 Bit 1 Bit 0

6–7 WORD Unused ResetPStop ClearMotion PauseMotion SetPoint

5.5.4 Motion command group of tags
This group of tags will define the type of motion command that is being sent to the robot and the
arguments of the respective command. The motion command tag (shown in the table below) contains
the ID of the motion command (see Table 7). The motion command argument tags contain the
arguments of the motion command (Table 48).

See Section 3.3 and Section 3.4 for detailed explanations.

Table 47: Motion command tag

MOTION COMMANDS

Bytes Data Type Name Possible values

8–11 UDINT MotionCommandID 0, 1, 2, ... (Table 7)

Table 48: Motion command arguments tags

MOTION COMMAND TAGS

Bytes Data Type Name

12–15 Real Motion command argument 1

16–19 Real Motion command argument 2

20–23 Real Motion command argument 3

24–27 Real Motion command argument 4

28–31 Real Motion command argument 5

32–35 Real Motion command argument 6

5.5.5 Host time tag
This tag controls robot's date/time (real-time-clock). See Table 9 for details.

Table 49: Host time tag

HOST TIME TAG

Bytes Data Type Name Minimum Maximum

36–39 DINT HostTime 0 232 − 1

94 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERNET/IP COMMUNICATION

5.5.6 Brake control tag
This tag controls robot brakes (applies only when robot is deactivated). This table describes the tag's
bits. See Table 10 for detailed explanations about brakes behavior.

Table 50: Brakes control tag

BRAKES CONTROL TAG

Bytes Data Type Bits 2–31 Bit 1 Bit 0

40–43 DWORD Unused EngageBrakes EnableBrakesControl

5.5.7 dynamic data configuration tag
This tag is used to choose which dynamic data type the robot will return (Table 51). See Table 11.

Table 51: Dynamic data configuration tag

DYNAMIC DATA CONFIGURATION

Bytes Data Type Name Minimum Maximum

† DINT DynamicDataTypeID 0 53

† Index vary on the four available dynamic data configuration tags (see Table 43).

5.6. Input tag assembly
The input tag assembly has an Instance of 100 with a size 252-byte array, as detailed in Table 52. Please
refer to Section 3.5 for a description of the objects and their fields.

The following subsections define how these objects are mapped to EtherNet/IP input tag assembly (as
also described in the EDS file).

Table 52: Input tag assembly

INPUT TAG ASSEMBLY

Bytes Data Type Data Description

0–1 WORD RobotStatus See Table 53.
2–3 UINT ErrorCode See Table 54.

4–7 UDINT Checkpoint See Table 55.

8–9 UINT MoveID See Table 56.

10–11 UINT Motion queue space See Table 57.

12–13 WORD MotionStatus See Table 58.

14–15 UINT OfflineProgramID See Table 59.

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 95

ETHERNET/IP COMMUNICATION

Table 52: Input tag assembly (continued)

INPUT TAG ASSEMBLY

Bytes Data Type Data Description

16–19 REAL TargetJointSet (joint 1)

See Table 60.

20–23 REAL TargetJointSet (joint 2)

24–27 REAL TargetJointSet (joint 3)

28–31 REAL TargetJointSet (joint 4)

32–35 REAL TargetJointSet (joint 5)

36–39 REAL TargetJointSet (joint 6)

40–43 REAL TargetEndEffectorPose x

See Table 61.

44–47 REAL TargetEndEffectorPose y
48–51 REAL TargetEndEffectorPose z
52–55 REAL TargetEndEffectorPose α
56–59 REAL TargetEndEffectorPose β
60–63 REAL TargetEndEffectorPose γ
64 SINT TargetConfiguration cs (shoulder)

See Table 62.
65 SINT TargetConfiguration ce (elbow)

66 SINT TargetConfiguration cw (wrist)

67 SINT TargetConfiguration ct (last joint turn)

68–71 REAL WRF x

See Table 63.

72–75 REAL WRF y
76–79 REAL WRF z
80–83 REAL WRF α
84–87 REAL WRF β
88–91 REAL WRF γ
92–95 REAL TRF x

See Table 64.

96–99 REAL TRF y
100–103 REAL TRF z
104–107 REAL TRF α
108–111 REAL TRF β
112–115 REAL TRF γ
116–119 UDINT RobotTimestamp (seconds part)

See Table 65.

120–123 UDINT RobotTimestamp (microseconds part)

124–127 UDINT DynamicDataUpdateCount

128–131 UDINT Reserved for future use

132–135 UDINT Reserved for future use

136–139 UDINT Reserved for future use

96 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERNET/IP COMMUNICATION

Table 52: Input tag assembly (continued)

INPUT TAG ASSEMBLY

Bytes Data Type Data Description

140–143 UDINT DynamicData #1 type ID

See Table 66.

144–147 REAL DynamicData #1 value 1

148–151 REAL DynamicData #1 value 2

152–155 REAL DynamicData #1 value 3

156–159 REAL DynamicData #1 value 4

160–163 REAL DynamicData #1 value 5

164–167 REAL DynamicData #1 value 6

168–171 UDINT DynamicData #2 type ID

172–175 REAL DynamicData #2 value 1

176–179 REAL DynamicData #2 value 2

180–183 REAL DynamicData #2 value 3

184–187 REAL DynamicData #2 value 4

188–191 REAL DynamicData #2 value 5

192–195 REAL DynamicData #2 value 6

196–199 UDINT DynamicData #3 type ID

200–203 REAL DynamicData #3 value 1

204–207 REAL DynamicData #3 value 2

208–211 REAL DynamicData #3 value 3

212–215 REAL DynamicData #3 value 4

216–219 REAL DynamicData #3 value 5

220–223 REAL DynamicData #3 value 6

224–227 UDINT DynamicData #4 type ID

228–231 REAL DynamicData #4 value 1

232–235 REAL DynamicData #4 value 2

236–239 REAL DynamicData #4 value 3

240–243 REAL DynamicData #4 value 4

244–247 REAL DynamicData #4 value 5

248–251 REAL DynamicData #4 value 6

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 97

ETHERNET/IP COMMUNICATION

5.6.1 Robot status tag
The structure of the robot status tag is described in Table 53. See Table 13 for detailed explanations.

Table 53: Robot status tag

ROBOT STATUS TAG

Bytes Data Type Bits 6–15 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0–1 WORD Unused RecoveryMode BrakesEngaged SimMode Homed Activated Busy

5.6.2 Error code tag
The structure of the error code tag is described in Table 54. See Table 13 for detailed explanations.

Table 54: Error code tag

ERROR CODE TAGS

Bytes Data Type Name Minimum Maximum

2–3 UINT ErrorCode 0 65,535

5.6.3 Checkpoint tag
The structure of the checkpoint tag is described in Table 55. See Table 14 for detailed explanations.

Table 55: Checkpoint tag

CHECKPOINT TAG

Bytes Data Type Name Minimum Maximum

4–7 UDINT Checkpoint 0 8,000

5.6.4 MoveId tag
The structure of the MoveID tag is described in Table 56. See Table 14 for detailed explanations.

Table 56: MoveID tag

MOVEID TAG

Bytes Data Type Name Minimum Maximum

8–9 REAL MoveID 0 65,535

5.6.5 fIfO space tag
The structure of the Motion queue space tag is described in Table 57. See Table 14 for detailed
explanations.

98 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERNET/IP COMMUNICATION

Table 57: Motion queue space tag

FIFO SPACE TAG

Bytes Data Type Name Minimum Maximum

10–11 UINT Motion queue space 0 13,000

The motion queue space may still be at its maximum value (13000) after several commands,
even if they have not yet been executed. In fact, the robot will compile some commands in
advance and remove them from the motion queue before they are executed.

5.6.6 Motion status tag
The structure of the motion status tag is described in Table 58. See Table 14 for detailed explanations.

Table 58: Motion status tag

MOTION STATUS TAG

Bytes Data Type Bits 6–15 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

12–13 WORD Unused ExcessiveTorque PStop Cleared EOM EOB Paused

5.6.7 Offline program Id
This tag indicates the ID of the offline program currently running (Table 59). See Table 14 for details.

Table 59: Offline program tag

OFFLINE PROGRAM ID

Bytes Data Type Name Minimum Maximum

14–15 UINT OfflineProgramID 1 500

5.6.8 Target joint set
The structure of the target joint set tag is described in Table 60. The data is the same as that returned by
TCP/IP command GetRtTargetJointPos.

Table 60: Target joint set tag

TARGET JOINT SET TAGS

Bytes Data Type Name Minimum Maximum

16–19 REAL Target position of joint 1 −175.000 175.000
20–23 REAL Target position of joint 2 −70.000 90.000

24–27 REAL Target position of joint 3 −135.000 70.000

28–31 REAL Target position of joint 4 −170.000 170.000

32–35 REAL Target position of joint 5 −115.000 115.000

36–39 REAL Target position of joint 6 −36,000.000 36,000.000

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 99

ETHERNET/IP COMMUNICATION

5.6.9 Target end-effector pose
The structure of the target end-effector pose tag is described in Table 61. The data is the same as that
returned by TCP/IP command GetRtTargetCartPos.

Table 61: Target end-effector pose tag assembly

TARGET END-EFFECTOR POSE TAGS

Bytes Data Type Name

40–43 REAL Coordinate x
44–47 REAL Coordinate y
48–51 REAL Coordinate z
52–55 REAL Euler angle α
56–59 REAL Euler angle β
60–63 REAL Euler angle γ

5.6.10 Target configuration
The structure of the target configuration tag is described in Table 62. The data is the same as that
returned by the combination of the TCP/IP commands GetRtTargetConf and GetRtTargetConfTurn.

Table 62: Robot target configuration tags

TARGET CONFIGURATION TAGS

Bytes Data Type Name Minimum Maximum

64 SINT cs (shoulder) −1 1

65 SINT ce (elbow) −1 1

66 SINT cw (wrist) −1 1

67 SINT ct (last joint turn) −100 100

5.6.11 WRf
The structure of WRF tag is described in Table 63. The data is the same as that returned by GetRtWrf.

Table 63: WRF tag assembly

WRF TAG ASSEMBLY

Bytes Data Type Name

68–71 REAL Coordinate x
72–75 REAL Coordinate y
76–79 REAL Coordinate z
80–83 REAL Euler angle α
84–87 REAL Euler angle β
88–91 REAL Euler angle γ

100 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

ETHERNET/IP COMMUNICATION

5.6.12 TRf
The structure of TRF tag is described in Table 64; it is the same data as what is returned by GetRtTrf.

Table 64: TRF tag assembly

TRF TAG ASSEMBLY

Bytes Data Type Name

92–95 REAL Coordinate x

96–99 REAL Coordinate y

100–103 REAL Coordinate z

104–107 REAL Euler angle α

108–111 REAL Euler angle β

112–115 REAL Euler angle γ

5.6.13 Robot timestamp
The structure of the Robot timestamp tag is described in Table 65. See Table 15 for details.

Table 65: Robot timestamp tag assembly

ROBOT TIMESTAMP TAG ASSEMBLY

Bytes Data Type Name

116–119 UDINT RobotTimestamp (seconds part)

120–123 UDINT RobotTimestamp (microseconds part)

124–127 UDINT DynamicDataUpdateCount

128–131 UDINT Reserved for future use

132–135 UDINT Reserved for future use

136–139 UDINT Reserved for future use

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 101

ETHERNET/IP COMMUNICATION

5.6.14 dynamic data
The structure of the dynamic data tags are described below. See Table 16 for detailed explanations.

Table 66: Dynamic data tag assembly

DYNAMIC DATA TAG

Bytes Data Type Name

† UDINT DynamicDataTypeID

† REAL Value 1

† REAL Value 2

† REAL Value 3

† REAL Value 4

† REAL Value 5

† REAL Value 6
† Indices vary with each of the four dynamic
data structures (see Table 52).

102 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

PROfINET COMMUNICATION

6. PROfINET COMMUNICATION

Certified by PROFIBUS, the Meca500 is compatible with the PROFINET protocol, a common industry
standard that can be used with many different PLC brands. Cyclic times up to 1 ms (though not as "hard-
real-time" as EtherCAT).

PROFINET—like EtherCAT or EtherNet/IP protocols—controls the robot using cyclic messaging ('CR Input'
and 'CR Output' in PROFINET terms).

6.1. PROfINET conformance class
The Electronic Data Sheet (EDS) file for the Meca500 robot is included in the zip file that contains the
robot firmware update. These zip files are available in the Downloads section of our web site.

6.1.1 PROfINET limitations on the Meca500 robot
The Meca500 robot does not support the following PROFINET features:

 • Startup mode: legacy startup mode (only advanced startup mode supported).
 • SNMP: part of PROFINET conformance class B (the robot supports class A only).
 • DHCP: the robot does not support selecting DHCP mode via the PROFINET protocol. Note that con-
figuring the robot to use DHCP mode remains possible through the Web Portal.

 • Fast startup.

6.2. Connection types
When using PROFINET, you can connect several Meca500 robots, the same as with TCP/IP. Either
Ethernet port on the base of the robot can be used. Meca500 robots can be either daisy-chained
together or connected in a star pattern.

6.2.1 Limitations when daisy-chaining robots
Please note that the two Ethernet ports on the Meca500 robot act as an un-managed Ethernet switch,
not as a "PROFINET-aware" switch. In fact, this Ethernet switch will not respond to LLDP (Local Link
Discovery Protocol) packets like a PROFINET-enabled switch would (instead, it forwards LLDP through the
daisychain). As a consequence, the LLDP protocol will not properly identify the network topology when
the two Ethernet ports of the robots are connected (in a daisy-chain configuration, for example).

Fortunately, this does not prevent the use of PROFINET protocol, since daisy-chained robots will still be
detected by the PROFINET controller.

If you need full network topology discovery using LLDP, we recommend connecting the Meca500 robot
to a PROFINET-enabled Ethernet switch rather than in a daisy chain.

6.2.2 PROfINET protocol over your Ethernet network
The PROFINET protocol uses non-IP packets to communicate real-time data over the Ethernet network.
Please make sure that your Ethernet network and switches are properly forwarding these packets
between the PROFINET controller (PLC) and the Meca500 robots.

https://www.mecademic.com/support

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 103

PROfINET COMMUNICATION

Ethernet packets of type LLDP (0x88CC) are used for the LLDP protocol. This protocol makes it possible
to discover the network topology.

Ethernet packets of type PN-DCP (0x8892) are used for the DCP protocol (Discovery and Configuration
Protocol). This protocol is used to discover PROFINET devices on the network. It's also used to set host
names and IP addresses to detect PROFINET devices.

Ethernet packets of type PROFINET RT (0x8892) are used for PROFINET cyclic data exchanges between
the Meca500 robots and the PROFINET controller (PLC).

6.3. Enabling PROfINET
To enable the PROFINET communication protocol, you must first connect to the robot via the
TCP/IP protocol through an external client (e.g., from a PC using a Web browser), then send the
EnableProfinet(1) command. This is a persistent command; it only needs to be set once. To disable
PROFINET, you need to send the EnablePROFINET(0) command.

Note that EtherNet/IP can be left permanently enabled since it does not prevent using the TCP/IP
protocol, unlike EtherCAT and the SwitchToEtherCAT command.

Also note that LLDP forwarding on the Meca500 robot is enabled only when PROFINET is enabled on the
robot (so it will not be possible to detect a Meca500 robot using LLDP until PROFINET is enabled on it).

6.4. Exclusivity of AR
On the Meca500, only one AR (Application relationship) can be established with the robot. Only one
PROFINET controller (PCL) can control a Meca500 robot.

Controlling the robot is also exclusive between TCP/IP, EtherNet/IP and PROFINET protocols. The first
connection to the robot on any of these cyclic protocols will prevent any other connections on any
protocol.

If a PROFINET connection request is refused because the Meca500 robot is already being controlled by
another PROFINET controller (PLC), the refused connect request will be returned with standard error
codes and the following values:

 • Error code "connect" (0xDB)
 • Error decode "PNIO" (0x81)
 • Error1 "CMRPC" (0x40)
 • Error2 "No AR resource" (0x04)

If a PROFINET connection request is refused because the Meca500 robot is already being controlled by
another protocol (TCP/IP or EtherNet/IP), the refused connect request will be returned with a vendor-
specific error code and the following values:

 • Error code "connect" (0xDB)
 • Error decode "Manufacturer specific" (0x82)
 • Error1 "Mecademic Access denied" (0x11)

104 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

PROfINET COMMUNICATION

6.5. GSdML file
Each PROFINET slave device is described by a GSDML file (General Station Description XML file). The
GSDML file describes the device capabilities, and the PROFINET Modules and SubModules that it
supports. The PROFINET controllers (PLC) use this file to properly identify detected PROFINET devices,
like the Meca500 robot.

The Meca500 GSDML file is provided along with the Meca500 firmware updates starting with release 9.1.
It is also available in the Downloads section of our web site.

Since the GSDML file contains necessary information to identify and list the Meca500 robot capabilities,
this manual will only provide a quick summary of the Meca500's GSDML file.

6.5.1 Meca500 modules and sub-modules
The Meca500 robot supports only one module and one sub-module, fixed in a predefined slot.

 • Module: "RobotControlModule", ID=0x32, fixed in slot 1
 • Sub-module Id 0x132, fixed in sub-slot 1

This module provides fixed cyclic data input and output, used to control and monitor the Meca500
robot.

6.6. Cyclic data
Using cyclic data to control and monitor Meca500 robots with PROFINET is explained in Section 3 of this
manual.

This cyclic data format is exactly the same with PROFINET, EtherNet/IP and EtherCAT protocols. It is thus
very easy to migrate a Meca500-controlling application on a controller/PLC between these different
protocols.

Please refer to the Meca500 GSDML file for the list of cyclic input/output fields and refer to Section 3 of
this document to learn how to use these cyclic fields.

Note that 16 and 32 bits integer values in the cyclic data use big-endian byte order. Some PLCs may
need to be configured accordingly.

6.7. Alarms
The Meca500 robot will not generate any PROFINET alarms. Any alarm or error condition will be
reported by the robot through the corresponding cyclic data fields. This allows the Meca500 to behave
the same across various Cyclic protocols (like PROFINET, EtherNet/IP or EtherCAT).

Please refer to Section 3 of this manual for more information about robot status and error states
reported in the cyclic input data.

https://www.mecademic.com/support

Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x) 105

GLOSSARy

7. GLOSSARy

Table 67 presents of summary of the terms that we use frequently in our manuals and in the robot's
web interface.

Table 67: Glossary of terms used by Mecademic

GLOSSARY OF TERMS

TERM DESCRIPTION

BRF Base reference frame (see Figure 2).

Cartesian space The space where the location of an object, such as the robot's end-effector, is defined by a
pose (position and orientation). For example, we can say that a MoveLin* command forces
the TCP to follow a straight line in Cartesian space.

Control port The TCP port over which commands to the robot and messages from the robot are sent
(see Section 2).

EOAT End-of-arm-tooling. Mecademic offers two electric grippers (MEGP 25E and MEGP 25LS)
and one pneumatic module (MPM500) that can be controlled directly by the Meca500.

Error mode The robot goes into error mode when it encounters an error while executing a command
or a hardware problem (see Section 2.5.1).

Euler angles Three angles corresponding to three consecutive rotations, used to define the orientation
in space of one reference frame with respect to another (see Section 1.1.4).

FRF Flange reference frame (see Figure 2).

Inverse kinematics The problem of finding all possible joint sets for a desired pose of the TRF with respect to
the WRF (see Section 1.2.1).

Joint angle The angle associated with robot joint i (i = 1, 2, ..., 6), denoted by θi and measured in
degrees (see Section 1.1.5).

Joint position The set of all joint angles, i.e., {θ1, θ2, θ3, θ4, θ5, θ6}, also referred to as joint set (see
Section 1.1.6).

Joint set The set of all joint angles, i.e., {θ1, θ2, θ3, θ4, θ5, θ6}, also referred to as joint position (see
Section 1.1.6).

Joint space The six-dimensional space defined by the positions of the robot joints.

Monitoring port The TCP port over which data is sent periodically from the robot (see Section 2).

Motion command A command used to construct a trajectory for the robot. When the Meca500 receives a
motion command, it places it in a motion queue (see Section 2.1). Examples include the
commands Delay, MoveLin, SetTrf, and SetJointVel.

Motion queue A buffer where motion commands that were sent to the robot are stored and executed on
a FIFO basis by the robot (see Section 2.1).

https://www.mecademic.com/en/megp25e-electric-parallel-gripper
https://www.mecademic.com/en/megp25ls-electric-gripper
https://www.mecademic.com/en/pneumatic-module

106 Programming Manual for Mecademic Industrial Robots (for firmware 9.3.x)

GLOSSARy

Table 67: Glossary of terms used by Mecademic (continued)

GLOSSARY OF TERMS

TERM DESCRIPTION

Offline program A sequence of motion commands that can be saved in the robot's storage using the
commands StartSaving and StopSaving, and later called by the command StartProgram.

Pose Position and orientation of one reference frame with respect to another.

Position mode One of the two control modes, in which the robot's motion is generated by requesting a
target robot position or joint position (see Section 1.3.4).

Posture configuration The set of two-value (−1 or 1) parameters cs, ce, and cw that normally define each of the
eight possible robot postures for a given pose of the robot's end-effector.

Request command A command that is executed immediately and returns a specific response (see Section 2.2).
Examples includes the commands ClearMotion, Home, GetRobotName, GetTrf, and
GetrGripperForce.

Robot position The pose of the robot's end-effector, as well as the four configuration parameters. If the
robot is in a singularity, however, we cannot define a robot position, and must define a
joint position instead.

Robot posture The arrangement of the robot links. Thus, the joint sets {θ1, θ2, θ3, θ4, θ5, θ6} and
{θ1, θ2, θ3, θ4, θ5, θ6 + n360°}, where n is an integer, correspond to the same robot posture
(see Section 1.1.6).

Singularity A robot posture where the robot's end-effector is blocked in some direction even if no
joint is at a limit (see Section 1.2.3). There are three types of singularities, corresponding
to conditions where each of the three posture parameters are not defined: shoulder
singularity, elbow singularity, wrist singularity.

TCP Tool center point, the origin of the tool reference frame (see Figure 2).

TRF Tool reference frame (see Figure 2).

Turn configuration An integer ct, such that −180° + ct360° < θ6 ≤ 180° + ct360° (see Section 1.1.5).

Velocity mode One of the two control modes, in which the robot's motion is generated by requesting a
target end-effector or joint velocity (see Section 1.3.4).

Workspace The set of all poses of the TRF with respect to the WRF that are reachable with at least one
posture and turn configuration (see Section 1.2.3).

WRF World reference frame (see Figure 2).

Wrist center The point where the axes of joints 4, 5 and 6 intersect.

Contact Us

Mecademic
1300 St-Patrick Street
Montreal (Quebec) H3K 1A4
Canada

1-514-360-2205
1-833-557-6268 (toll-free in North America)

https://support.mecademic.com

© Copyright 2015–2023 Mecademic

https://support.mecademic.com/support/home

	1.	Basic Theory and Definitions
	1.1.	Definitions and conventions
	1.1.1	Units
	1.1.2	Joint numbering
	1.1.3	Reference frames
	1.1.4	Pose and Euler angles
	1.1.5	Joint angles and joint 6 turn configuration
	1.1.6	Joint set and robot posture

	1.2.	Configurations, singularities and workspace
	1.2.1	Inverse kinematic solutions and configuration parameters
	1.2.2	Automatic configuration selection
	1.2.3	Workspace and singularities
	1.2.4	Crossing singularities with linear Cartesian-space movements

	1.3.	Key concepts for Mecademic robots
	1.3.1	Homing
	1.3.2	Recovery mode
	1.3.3	Blending
	1.3.4	Position and velocity modes

	2.	TCP/IP Communication
	2.1.	Motion commands
	2.1.1	Delay(t)
	2.1.2	GripperOpen/GripperClose
	2.1.3	MoveGripper(d)
	2.1.4	MoveJoints(θ1,θ2,θ3,θ4,θ5,θ6)
	2.1.5	MoveJointsRel(Δθ1,Δθ2,Δθ3,Δθ4,Δθ5,Δθ6)
	2.1.6	MoveJointsVel(θ̇1,θ̇2,θ̇3,θ̇4,θ̇5,θ̇6)
	2.1.7	MoveLin(x,y,z,α,β,γ)
	2.1.8	MoveLinRelTrf(x,y,z,α,β,γ)
	2.1.9	MoveLinRelWrf(x,y,z,α,β,γ)
	2.1.10	MoveLinVelTrf(ẋ,ẏ,ż,ωx,ωy,ωz)
	2.1.11	MoveLinVelWrf(ẋ,ẏ,ż,ωx,ωy,ωz)
	2.1.12	MovePose(x,y,z,α,β,γ)
	2.1.13	SetAutoConf(e)
	2.1.14	SetAutoConfTurn(e)
	2.1.15	SetBlending(p)
	2.1.16	SetCartAcc(p)
	2.1.17	SetCartAngVel(ω)
	2.1.18	SetCartLinVel(v)
	2.1.19	SetCheckpoint(n)
	2.1.20	SetConf(cs,ce,cw)
	2.1.21	SetConfTurn(ct)
	2.1.22	SetGripperForce(p)
	2.1.23	SetGripperRange(dclosed,dopen)
	2.1.24	SetGripperVel(p)
	2.1.25	SetJointAcc(p)
	2.1.26	SetJointVel(p)
	2.1.27	SetJointVelLimit(po)
	2.1.28	SetTorqueLimits(p1,p2,p3,p4,p5,p6)
	2.1.29	SetTorqueLimitsCfg(s,m)
	2.1.30	SetTrf(x,y,z,α,β,γ)
	2.1.31	SetValveState(v1,v2)
	2.1.32	SetVelTimeout(t)
	2.1.33	SetWrf(x,y,z,α,β,γ)

	2.2.	General request commands
	2.2.1	ActivateRobot(e)
	2.2.2	ActivateSim/DeactivateSim
	2.2.3	ClearMotion
	2.2.4	DeactivateRobot
	2.2.5	BrakesOn/BrakesOff
	2.2.6	EnableEtherNetIp(e)
	2.2.7	EnableProfinet(e)
	2.2.8	GetExtToolFwVersion
	2.2.9	GetFwVersion
	2.2.10	GetModelJointLimits(n)
	2.2.11	GetProductType
	2.2.12	GetRobotName
	2.2.13	GetRobotSerial
	2.2.14	Home
	2.2.15	LogTrace(s)
	2.2.16	LogUserCommands(e1,e2)
	2.2.17	PauseMotion
	2.2.18	ResetError
	2.2.19	ResetPStop
	2.2.20	ResumeMotion
	2.2.21	SetCtrlPortMonitoring(e)
	2.2.22	SetEob(e)
	2.2.23	SetEom(e)
	2.2.24	SetExtToolSim(e)
	2.2.25	SetJointLimits(n,θn,min,θn,max)
	2.2.26	SetJointLimitsCfg(e)
	2.2.27	SetMonitoringInterval(t)
	2.2.28	SetNetworkOptions(n1,n2,n3,n4,n5,n6)
	2.2.29	SetOfflineProgramLoop(e)
	2.2.30	SetRealTimeMonitoring(n1,n2,...)
	2.2.31	SetRobotName(s)
	2.2.32	SetRecoveryMode(e)
	2.2.33	SetRtc(t)
	2.2.34	SetToolSphere(x,y,z,r)
	2.2.35	SetWorkspaceLimitsCfg(s,m)
	2.2.36	SetWorkspaceLimits(xmin,ymin,zmin,xmax,ymax,zmax)
	2.2.37	StartProgram(s)
	2.2.38	StartSaving(n)
	2.2.39	StopSaving
	2.2.40	SyncCmdQueue(n)
	2.2.41	SwitchToEtherCat
	2.2.42	TcpDump(n)
	2.2.43	TcpDumpStop

	2.3.	Data request commands
	2.3.1	GetAutoConf
	2.3.2	GetAutoConfTurn
	2.3.3	GetBlending
	2.3.4	GetCartAcc
	2.3.5	GetCartAngVel
	2.3.6	GetCartLinVel
	2.3.7	GetCheckpoint
	2.3.8	GetConf
	2.3.9	GetConfTurn
	2.3.10	GetGripperForce
	2.3.11	GetGripperRange
	2.3.12	GetGripperVel
	2.3.13	GetJointAcc
	2.3.14	GetJointLimits(n)
	2.3.15	GetJointLimitsCfg
	2.3.16	GetJointVel
	2.3.17	GetJointVelLimit
	2.3.18	GetMonitoringInterval
	2.3.19	GetNetworkOptions
	2.3.20	GetRealTimeMonitoring
	2.3.21	GetToolSphere
	2.3.22	GetTorqueLimits
	2.3.23	GetTorqueLimitsCfg
	2.3.24	GetTrf
	2.3.25	GetVelTimeout
	2.3.26	GetWorkspaceLimits
	2.3.27	GetWorkspaceLimitsCfg
	2.3.28	GetWrf

	2.4.	Real-time data request commands
	2.4.1	GetCmdPendingCount
	2.4.2	GetJoints
	2.4.3	GetPose
	2.4.4	GetRtAccelerometer(n)
	2.4.5	GetRtc
	2.4.6	GetRtCartPos
	2.4.7	GetRtCartVel
	2.4.8	GetRtConf
	2.4.9	GetRtConfTurn
	2.4.10	GetRtExtToolStatus
	2.4.11	GetRtGripperForce
	2.4.12	GetRtGripperPos
	2.4.13	GetRtGripperState
	2.4.14	GetRtGripperVel
	2.4.15	GetRtJointPos
	2.4.16	GetRtJointTorq
	2.4.17	GetRtJointVel
	2.4.18	GetRtTargetCartPos
	2.4.19	GetRtTargetCartVel
	2.4.20	GetRtTargetConf
	2.4.21	GetRtTargetConfTurn
	2.4.22	GetRtTargetJointPos
	2.4.23	GetRtTargetJointTorq
	2.4.24	GetRtTargetJointVel
	2.4.25	GetRtTrf
	2.4.26	GetRtValveState
	2.4.27	GetRtWrf
	2.4.28	GetStatusGripper
	2.4.29	GetStatusRobot
	2.4.30	GetTorqueLimitsStatus

	2.5.	Responses and messages
	2.5.1	Command error messages
	2.5.2	Command responses
	2.5.3	Status messages
	2.5.4	Monitoring port messages

	2.6.	Management of errors and hardware stops
	2.6.1	Errors detected by the robot
	2.6.2	SWStop
	2.6.3	E-Stop and P-Stop 1

	3.	Communicating Over Cyclic Protocols
	3.1.	Cyclic data
	3.2.	Types of robot commands
	3.2.1	Status change commands
	3.2.2	Triggered actions
	3.2.3	Motion commands

	3.3.	Sending motion commands
	3.3.1	Command ID
	3.3.2	MoveID and SetPoint
	3.3.3	Adding non-cyclic motion commands to the motion queue (position mode)
	3.3.4	Sending cyclic motion commands (velocity mode)

	3.4.	Cyclic data that can be sent to the robot
	3.4.1	Robot control
	3.4.2	Motion control
	3.4.3	Motion parameters
	3.4.4	Host time
	3.4.5	Brake control
	3.4.6	Dynamic data configuration

	3.5.	Cyclic data received from the robot

	4.	EtherCAT Communication
	4.1.	Overview
	4.1.1	Connection types
	4.1.2	ESI file
	4.1.3	Enabling EtherCAT
	4.1.4	LEDs

	4.2.	Object dictionary
	4.2.1	Robot control
	4.2.2	Motion control
	4.2.3	Movement
	4.2.4	Host time
	4.2.5	Brake control
	4.2.6	Dynamic data configuration
	4.2.7	Robot status
	4.2.8	Motion status
	4.2.9	Target joint set
	4.2.10	Target end-effector pose
	4.2.11	Target configuration
	4.2.12	WRF
	4.2.13	TRF
	4.2.14	Robot timestamp
	4.2.15	Dynamic data
	4.2.16	Communication mode (SDO)

	4.3.	PDO Mapping

	5.	EtherNet/IP Communication
	5.1.	Connection types
	5.2.	EDS file
	5.3.	Forward open exclusivity
	5.4.	Enabling Ethernet/IP
	5.5.	Output tag assembly
	5.5.1	Robot control tag
	5.5.2	MoveID tag
	5.5.3	Motion control tag
	5.5.4	Motion command group of tags
	5.5.5	Host time tag
	5.5.6	Brake control tag
	5.5.7	Dynamic data configuration tag

	5.6.	Input tag assembly
	5.6.1	Robot status tag
	5.6.2	Error code tag
	5.6.3	Checkpoint tag
	5.6.4	MoveID tag
	5.6.5	FIFO space tag
	5.6.6	Motion status tag
	5.6.7	Offline program ID
	5.6.8	Target joint set
	5.6.9	Target end-effector pose
	5.6.10	Target configuration
	5.6.11	WRF
	5.6.12	TRF
	5.6.13	Robot timestamp
	5.6.14	Dynamic data

	6.	PROFINET Communication
	6.1.	PROFINET conformance class
	6.1.1	PROFINET limitations on the Meca500 robot

	6.2.	Connection types
	6.2.1	Limitations when daisy-chaining robots
	6.2.2	PROFINET protocol over your Ethernet network

	6.3.	Enabling PROFINET
	6.4.	Exclusivity of AR
	6.5.	GSDML file
	6.5.1	Meca500 modules and sub-modules

	6.6.	Cyclic data
	6.7.	Alarms

	7.	Glossary

