%A

MeCaDemMIC

User Guide for working with Connected Component
Workbench TCP/IP

Micro820 PLC

Contents

1
2
3

Electrical COMMECTIONS ..ottt e re e
SOTEWALE ...ttt ettt nr e
PrOGIramIiNEcoooiiiiiiiii ittt h e bt h e e s a bt et e bt e bt e R e e e b e e e Rt e bt be e b e nne e n e r e ns
3.1 Connect, Activate and HOMEc.ooiiiiiiiii ittt e e stae e e nta e e snaeeenreas
3.2 SeNdINg COMMANAScviireiiiiiei e r s e nr e s r e e r e srees e e areareenenre e e e nneanes
3.3 ReCeIVING FEEADACK.ccuiiitiiiiiiii bbbt nnne s
3.4 RECEIVING VAITADIES.viitiiitiiiiiiiit ettt ettt b e bt e s bt e sb e e she e san e s b e b e e sbeenbeennnennneas
3.5 JOZ METIU .ot

/‘/\ mecabemic User Guide for Working with Connected Component Workbench TCP/IP

1 Electrical connections

Two connections are required for the Micro 820 PLC:
e a 24V power connection;
e aline of communication with the Meca500 and a computer via an Ethernet switch.

Ensure the above are properly connected before proceeding to make a connection between CCW, the PLC and
the Meca500.

2 Software

Connected Component Workbench (CCW) is an application development software for a range of Rockwell
PLCs. There is a free version called the standard edition and a developer edition that requires a paid license.
Both editions are available on the Rockwell website?.

When a new project is created in CCW a pop-up will appear where a controller must be selected as shown in
Figure 1. Configure as required for your application.

existing device or

catalog.

Figure 1 — PLC and I/O configuration

! At the time of this writing the latest version is 12.00.00

Page 1 of 8

User Guide for Working with Connected Component Workbench TCP/IP /‘/\ MEC3DEMIC

After configuring your hardware, you will be greeted with a blank tree. In order to write logic for your
application, right click on 'Programs' and add the desired language as highlighted in Figure 2.

Project Organizer 01X

Mame: Projectl®
Devices Trends
W
=211 Micro820™

v = Global Variables
------ ﬁl User-Defined Function Blocks
------ 511 User-Defined Functions

------ 5 DataTypes

Figure 2 — Main Tree Side Bar

Once you are on your first program page you are ready to program TCP/IP communication with the Meca500.

Page 2 of 8

/‘I\ mecabemic User Guide for Working with Connected Component Workbench TCP/IP

3 Programming

This section will demonstrate different examples of commands that can be send to a Mecademic robot using
CCW. The communication will be done using TCP/IP.

3.1 Connect, Activate and Home

Establishing a TCP/IP connection between the meca500 and the Micrologix PLC require some specific steps.
The first would be to create and open a socket. The ‘Function Block’ ¢ MxConnect’ shown in Figure 3
demonstrate a typical way of doing this.

24: IF in start THEN

25 state := 0;

26; END IF;

27

28! CR3E state OF

28

30 dummyliddress.Port := 0;

31 dummyiddress.IPAddress [0] = 0;
3z dummyiddress . IPAddress[1] :

33 dummylddress.IPhddress[2] : H
34 dummylddress.IPhddress[3] = 0;
35 out_SocketInstance := 0;

36 out_done := FR

37 Qut_error =

39 state := 1

40

41 1 ate a P type
42 IF socketCreate.Done

43 state = 2

44 out_socketInstance :=

45 ELSIF socketCreate

46 Out_error :=

47 END_IF;

49 2: /f/Cpen the communi

50 IF socketOpen.Done T

51 E

52 n

53 out_error :=

54 END IF;

55

56 EI

57

58

59

a0

61

62 nTrig.Q, out_socketInstance, ANY TC UDINT (0), in robothddress, FRLSE);

Figure 3 — First Line for TCP/IP Communication

When the block is first called, all parameters are set to 0. Next, a communication socket is created. If the creation
of the socket was successful, the socket is opened and if the opening was successful a “done” Boolean is
returned to the main routine.

We now have a connection between the robot and the controller. Before sending move commands we need to
activate and home the robot. We will do this by sending those commands with the help of the function blocks
“ MxActivate” and “ MxHome” that are respectively shown in Figure 4 and Figure 5.

Page 3 of 8

User Guide for Working with Connected Component Workbench TCP/IP

M\ mecapemic

1 IF in_start THEN
2 out_done
3{ END IF;
q
5; commandToSend := '"ActivateRobot':
8
7 txTrig(in_start = TRUE):
8 MxEobotTx(commandToSend, in socketInstance, txTrig.Q):
9
10 IF MzxRobotTx.out_done THEN
11 out_done := TRUE;
12: END IF;
Figure 4 — “ActivateRobot” Command
1; IF in start THEHN
2 out_done := FRLSE;
3! END IF;
q
5 commandToSend := "Home';
&
7; txTrig(in start = TEUE}:
8 MxRobotTx (commandToSend, in socketInstance, txTrig.Q):
]
10: IF MxRokbotTx.out done THEN
11 out done := TRUE;
12; END IF:

Figure 5 - “Home” Command

In Figure 6 and below, is the Main Routine where the logic of calling the previous functions are shown.

Page 4 of 8

CONNECTING STATE:

IF MzConnect.out_done
SOCHETINSTANCE

1= Mxi

-out_socketInstance;

SIF MxConnect.out_error THE!
robotState := FRULTED_STRTE:
END IF;

IF robotConnected
robotState := CONNECTED_STATE:

END_IF;

THEN

CONNECTED STARTE:
IF activateRequest THEN
robotState := ACTIVATING_STATE;

END_IF;

ACTIVATING STATE:
IF MxRActivate.out_done AND (motorsActivated OR
robotState := ACTIVATED STATE;

END TIF;

motorsAlreadyActivated) THEN

ACTIVATED STATE:

IF homingRequest THEN
robotState := HOMING STATE;

END_IF;

HOMING STATE:

IF homingDone

robotState := PRARRMETERS_STATE;
ELSIF homingAlreadyDone THEN

robotState := HOMED STRTE:
END_IF;

Figure 6 — Main Routine Sequence

/‘I\ mecabemic User Guide for Working with Connected Component Workbench TCP/IP

231 connectTrig(robotState = CONNECTING STATE)
232 M=xConnect (robotIplAddress, connectTrig.(Q):
233

234! activatelrig(robotState = ACTIVATING STATE);
235, M=xRActivate (SOCEETINSTAMNCE, activateTrig.(Q):
236

237! homeTrig(robotState = HOMING STATE);

238 MxHome (homeTrig.Q, SOCEETINSTANCE)

239

Figure 7 — Main Routine Function Blocks

At the time of writing, the management of the robot states are not yet finished in the
“Mecademic CCW_Demo_VO0 16 0” project. However, the way these steps are managed is there and can be
expanded in a future version.

3.2 Sending Commands

The Meca500 accepts commands in the form of ASCII strings. We can send those strings directly to the robot
with the help of the “ MxRobotTx” function block shown in Figure 8.

18; IF in_start THEN
2

21 state = 0;

22 out_done =

23 out_error :=
24

25 END _IF

SE state OF

29 MxStringToArray (in_stringToSend);
30 state:i=1;

33 state:=2;

41 out_error := TRUE;
42 END_IF;:

43

44 3

48: socketWriteTrig(state = 2);

50! socketWrite (socketWri
51 MxStringT

g.Q , in socketInstance, ANY TO UDINT(0), , MxStringToRArray.out_ array,
v.out_nbElementInArray, ANY TO_UINT(0}):

Figure 8 —“_MxRobotTx” Function Block

To use this function block, a String to send must be set before using a rising edge trigger. When the block is
called the “ MxStringArray” function is called, this will transform the string to an array that can then be send to
the robot with the built function “SocketWrite”.

There are certain commands we want to send to the Meca500 for initialization. Such commands include
'ResetError', 'ActivateRobot', 'Home' as well as others to set reference frames, speeds and accelerations. In
general, we only want to send these commands once, and we want to send them before any other commands at
every power up.

Page 5 of 8

User Guide for Working with Connected Component Workbench TCP/IP /‘/\ MEC3DEMIC

Figure 9 and Figure 10 shows how the parameters are sent to the robot. To know if the robot needs to have all the
parameters resent, we look at the response we get when we send the home command. This logic is shown in
Figure 11.

2; IF _ SYSVA FIRST_SCEN
3 parameterSent
4; END_IF:
5
6! sendrllParametersTrig (ROBOTSTATE = PARARMETERS STATE) ;
8! //The parameterSent walue can be changed between 1 and 2 if the user wants to use the autoconf parameter or the manual conf
9! IF sendAllParameter ig.Q TF
10 parameterSent
11 _IF;:
12
13! IF sethAutoConfRequest OR parameterSent = 1
14
15 //SethutoConf (0]1)
18 //Default = 1
17 commandToSend := oConf (' + BNY TC STRING(sethutcConf) + ') ';
18 sendCommand :=
19 parameterSent
Z0
21! ELSIF setConfReqguest OR parameterSent = 2
22
23 f/5etConf (-1]1,-111,-1]1)
24 commandToSend := Conf (' + BNY TO STRING(setConfl) + ',' + ANY TO STRING(setConf2) + ',' + ANY TO STRING(setConf3) + ')':
25 sendCommand = T
Z8 parameterSent := 3;
27
28; ELSIF setBlendingRegquest CFR parameterSent = 3
29
30 //SetBlending ([0..100])
31 //Default = 1
3z commandToSend + ANY TC STRING(setBlending) + ') ';
33 sendCommand
34 parameterSent = 4;
35
36i ELSIF setCarticcReguest CF parameterSent = 4 T
37
38 //5etCarthec ([0.001..600])
39 //Default = 50
40 commandToSend : + BNY TO_STRING(setCartlcc) + ')';
41 sendCommand :
42 parameterSent = 5;
Figure 9 — Parameters program
107
108 ELSIF setVelTimeoutReguest CR parameterSent = 13 THEN
109
110 S/5etVelTimeout { [0.001..11])
111 //Default = (
112 commandToSend + ;
113 sendCommand := T
114 paramseterSent
115
116; END IF:
117
118
119 IF parameterSent = 14 THEN
120 ROBOTSTATE := HCMED STATE:
121 parameterSent = 0;
122
123
124
125
iza
127 END IF:
128
129 txTrig(sendCommand = TEUE);
130 M=RokotTx(commandToSend, SCCEETINSTANCE, txTrig.Q):
121

Figure 10 — Parameters Send Trigger

Page 6 of 8

/‘I\ mecabemic User Guide for Working with Connected Component Workbench TCP/IP

HOMING STARTE:

F/If the robot was already homed, we don't resend all the initial parameters
IF homingDone THEHN
robotState = PARRMETERS STATE;
ELSIF homingAlreadyDone THEN
robotState := I-IOI-LED_S'EATE;
END IF:

Figure 11 — Parameters program

3.3 Receiving Feedback

To receive messages from the robot we are using the built-in socket read function. The function is called once
every 10ms. If messages from the robot are received faster than that, the controller will store them in an internal
buffer. For every message received, the “CodeExtrator” function isolates the 4 digits ID of the message and
toggles the associated Boolean variable. The logic that isolates the ID code is shown in Figure 12. If the response
contains a variable value like a robot status or a robot pose, the code extractor will output the variable string.

FOR i := 1 TC 247 DO
out_rawString := out_rawString + CHAR(ANY TO DINT (in array[i])}):
//Finds brackets 91 = [and S3 =]
IF in array[i] = 91 AND in array[i+5] = 93 THEN

/748 is the val
out_codeValue :

out_codeValue := out_codeValue + 1000* (ANY TO UINT (in array[i+l]) - 43);
out_codeValue := out_codeValue + 100* (RNY TO_UINT (in_array[i+2]) - 423):
out_codeValue := out_codeValus + 10* (ANY TC UINT (in_ arrav[i+3]) - 42);
out_codeValue := out_codeValue + (ANY TO UINT (in_array[i+4]) - 43);

out_codeValue OF
out_commandBufferFull :
out_unknownCommand

out syntaxError :

out_argumentError :

Figure 12 — “Code Extractor” Switch Case

3.4 Receiving variables

When a message is received, if it contains a variable information like a robot status or a joint value, those
arguments needs to be isolated. To accomplish this, the “ MxArgumentsFinder” function was written.

5! workingString := in_string;
bracketPosition := FIND(workingString, "]'):
T7i workingString := ERI CE (workingScring, ',', 1, bracketPosition):
8 stringLength := ML (working3tring)
9 workingString := F HT (workingString, stringlLength - 1);
10
11 i =1
12
13
14 have more then 3 decimals
15
16
17 stringlLength := MLEN (workingString);
8 commaPosition := FIND(workingString, ','):
19 argString := T (workingString, commaPosition - 1);
20 argLength := M argString);
21 workingString @ T (workingString, stringlLength - argLength - 1);
22 cut_arguments[i] := (ENY TO REAL(TRUNC (ENY TO REAL (argString) * ANY TO REAL(1000)))/BNY TO REAL(1000));:
23
24 i=i+1
25
26 FND WHTT.E

Figure 13 — Scan Block for Variables

Page 7 of 8

User Guide for Working with Connected Component Workbench TCP/IP /‘/\ MEC3DEMIC

3.5 Jog Menu

Before using the jog menu, you should have already sent the 'ResetError’, 'ActivateRobot' and 'Home' commands
to the Meca500. These commands are the basic start commands needed to be executed by the robot prior to use.

1; //The correct string will be built with the varibale speed assign to the selected axis.
2 IF joghxislIncrease

3 commandToSend : JointsVel (' + BNY TO_STRING(jogSpeed) + ',0,0,0,0,0)";
4 sendCommand :=

5! ELSIF joghxis2Increase

& commandToSend : '+ ANY TO STRING(jogSpeed) + '

7 sendCommand := {1

8 ELSIF joghxis3Increase

g commandToSend := '+ ANY TO STRING(jogSpeed) + '

10 sendCommand := TEU

11! ELSIF joghxis4Increase

1z commandToSend := '+ ANY TO STRING(jogSpeed) + '

13 sendCommand :=

14: ELSIF joghxis5Increas

15 commandToSend '+ ANY TO STRING(jogSpeed) + ',0)';
16 sendCommand :=

17! ELSIF joghxiseéIncrease

18 commandToSend €1(0,0,0,0,0,' + BNY TO STRING(jogSpeed) + ')';
15 sendCommand :=

20: ELSIF joghxislDecrease

21 commandToSend : ntsVel(-' + BRNY TO_STRING(jogSpeed) + '

22 sendCommand := T

23! ELSIF joghxis2Decrease

24 commandToSend : 2intsVel (0,-' + ANY TC STRING(jogSpeesd) + ',0,0,0,0)";
25 sendCommand := TE

28 ELSIF joghzis3Decrease

27 commandToSend : 1(9,0,-" + ANY TO STRING(jogSpeed) + '

28 sendCommand :=

29! ELSIF joghxis4Decrease

30 commandToSend : J,-" + ANY TO STRING(jogSpeed) + '

31 sendCommand := TRUE

32 ELSIF joghxisSDecrease

33 commandToSend := J,-' + ANY TO STRING(jogSpeed) + '

34 sendCommand := TED

35! ELSIF joghxiseDecrease

36 commandToSend : intsVel(0,0,0,0,0,-" + ANY TO STRING(jogSpeed) + ')':
37 sendCommand :=

38

39 sendCommand :=

40! END_IF;

Figure 14 — Jog Routine

42: //As long as sendCommand is true sendCommandPulse is gonna toggle each cycle and therefor
43; //resend the moveJointVel to the robot

44 IF sendCommand AND sendCommandPulse THEN

45 sendCommandPulse

46; ELSIF sendCommand AN HEN

a7 sendCommandPulse :

48! END_IF;

49

50i //Everytime the sendCommandPulse is set to true, the string is sent.
51; txTrig(sendCommandPulse = TRUE};

52 MxRokotIx(commandToSend, SOCEETINSTANCE, txTrig.Q):

53

Figure 15 —Jog Routine
The logic of the Jog Routine is really simple. First, the correct string is built with the variable speed entered by

the user in the “jogspeed” variable. Then, a toggle, therefor a rising edge, happens continuously as long as the
job request for a specific axis is present.

Page 8 of 8

